Models, code, and papers for "Mohammad Ali Zamani":

Incorporating End-to-End Speech Recognition Models for Sentiment Analysis

Feb 28, 2019
Egor Lakomkin, Mohammad Ali Zamani, Cornelius Weber, Sven Magg, Stefan Wermter

Previous work on emotion recognition demonstrated a synergistic effect of combining several modalities such as auditory, visual, and transcribed text to estimate the affective state of a speaker. Among these, the linguistic modality is crucial for the evaluation of an expressed emotion. However, manually transcribed spoken text cannot be given as input to a system practically. We argue that using ground-truth transcriptions during training and evaluation phases leads to a significant discrepancy in performance compared to real-world conditions, as the spoken text has to be recognized on the fly and can contain speech recognition mistakes. In this paper, we propose a method of integrating an automatic speech recognition (ASR) output with a character-level recurrent neural network for sentiment recognition. In addition, we conduct several experiments investigating sentiment recognition for human-robot interaction in a noise-realistic scenario which is challenging for the ASR systems. We quantify the improvement compared to using only the acoustic modality in sentiment recognition. We demonstrate the effectiveness of this approach on the Multimodal Corpus of Sentiment Intensity (MOSI) by achieving 73,6% accuracy in a binary sentiment classification task, exceeding previously reported results that use only acoustic input. In addition, we set a new state-of-the-art performance on the MOSI dataset (80.4% accuracy, 2% absolute improvement).

* Accepted at the 2019 International Conference on Robotics and Automation (ICRA) will be held on May 20-24, 2019 in Montreal, Canada 

  Click for Model/Code and Paper
On the Robustness of Speech Emotion Recognition for Human-Robot Interaction with Deep Neural Networks

Apr 06, 2018
Egor Lakomkin, Mohammad Ali Zamani, Cornelius Weber, Sven Magg, Stefan Wermter

Speech emotion recognition (SER) is an important aspect of effective human-robot collaboration and received a lot of attention from the research community. For example, many neural network-based architectures were proposed recently and pushed the performance to a new level. However, the applicability of such neural SER models trained only on in-domain data to noisy conditions is currently under-researched. In this work, we evaluate the robustness of state-of-the-art neural acoustic emotion recognition models in human-robot interaction scenarios. We hypothesize that a robot's ego noise, room conditions, and various acoustic events that can occur in a home environment can significantly affect the performance of a model. We conduct several experiments on the iCub robot platform and propose several novel ways to reduce the gap between the model's performance during training and testing in real-world conditions. Furthermore, we observe large improvements in the model performance on the robot and demonstrate the necessity of introducing several data augmentation techniques like overlaying background noise and loudness variations to improve the robustness of the neural approaches.

* Submitted to IROS'18, Madrid, Spain 

  Click for Model/Code and Paper
EmoRL: Continuous Acoustic Emotion Classification using Deep Reinforcement Learning

Apr 03, 2018
Egor Lakomkin, Mohammad Ali Zamani, Cornelius Weber, Sven Magg, Stefan Wermter

Acoustically expressed emotions can make communication with a robot more efficient. Detecting emotions like anger could provide a clue for the robot indicating unsafe/undesired situations. Recently, several deep neural network-based models have been proposed which establish new state-of-the-art results in affective state evaluation. These models typically start processing at the end of each utterance, which not only requires a mechanism to detect the end of an utterance but also makes it difficult to use them in a real-time communication scenario, e.g. human-robot interaction. We propose the EmoRL model that triggers an emotion classification as soon as it gains enough confidence while listening to a person speaking. As a result, we minimize the need for segmenting the audio signal for classification and achieve lower latency as the audio signal is processed incrementally. The method is competitive with the accuracy of a strong baseline model, while allowing much earlier prediction.

* Accepted to the IEEE International Conference on Robotics and Automation (ICRA'18), Brisbane, Australia, May 21-25, 2018 

  Click for Model/Code and Paper
A DDoS-Aware IDS Model Based on Danger Theory and Mobile Agents

Dec 28, 2014
Mahdi Zamani, Mahnush Movahedi, Mohammad Ebadzadeh, Hossein Pedram

We propose an artificial immune model for intrusion detection in distributed systems based on a relatively recent theory in immunology called Danger theory. Based on Danger theory, immune response in natural systems is a result of sensing corruption as well as sensing unknown substances. In contrast, traditional self-nonself discrimination theory states that immune response is only initiated by sensing nonself (unknown) patterns. Danger theory solves many problems that could only be partially explained by the traditional model. Although the traditional model is simpler, such problems result in high false positive rates in immune-inspired intrusion detection systems. We believe using danger theory in a multi-agent environment that computationally emulates the behavior of natural immune systems is effective in reducing false positive rates. We first describe a simplified scenario of immune response in natural systems based on danger theory and then, convert it to a computational model as a network protocol. In our protocol, we define several immune signals and model cell signaling via message passing between agents that emulate cells. Most messages include application-specific patterns that must be meaningfully extracted from various system properties. We show how to model these messages in practice by performing a case study on the problem of detecting distributed denial-of-service attacks in wireless sensor networks. We conduct a set of systematic experiments to find a set of performance metrics that can accurately distinguish malicious patterns. The results indicate that the system can be efficiently used to detect malicious patterns with a high level of accuracy.

* 10 pages, 3 figure 

  Click for Model/Code and Paper
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations

Jul 15, 2019
Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, W. Bruce Croft

Users often fail to formulate their complex information needs in a single query. As a consequence, they may need to scan multiple result pages or reformulate their queries, which may be a frustrating experience. Alternatively, systems can improve user satisfaction by proactively asking questions of the users to clarify their information needs. Asking clarifying questions is especially important in conversational systems since they can only return a limited number of (often only one) result(s). In this paper, we formulate the task of asking clarifying questions in open-domain information-seeking conversational systems. To this end, we propose an offline evaluation methodology for the task and collect a dataset, called Qulac, through crowdsourcing. Our dataset is built on top of the TREC Web Track 2009-2012 data and consists of over 10K question-answer pairs for 198 TREC topics with 762 facets. Our experiments on an oracle model demonstrate that asking only one good question leads to over 170% retrieval performance improvement in terms of P@1, which clearly demonstrates the potential impact of the task. We further propose a retrieval framework consisting of three components: question retrieval, question selection, and document retrieval. In particular, our question selection model takes into account the original query and previous question-answer interactions while selecting the next question. Our model significantly outperforms competitive baselines. To foster research in this area, we have made Qulac publicly available.

* To appear in SIGIR 2019 

  Click for Model/Code and Paper
ANTIQUE: A Non-Factoid Question Answering Benchmark

May 22, 2019
Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, W. Bruce Croft

Considering the widespread use of mobile and voice search, answer passage retrieval for non-factoid questions plays a critical role in modern information retrieval systems. Despite the importance of the task, the community still feels the significant lack of large-scale non-factoid question answering collections with real questions and comprehensive relevance judgments. In this paper, we develop and release a collection of 2,626 open-domain non-factoid questions from a diverse set of categories. The dataset, called ANTIQUE, contains 34,011 manual relevance annotations. The questions were asked by real users in a community question answering service, i.e., Yahoo! Answers. Relevance judgments for all the answers to each question were collected through crowdsourcing. To facilitate further research, we also include a brief analysis of the data as well as baseline results on both classical and recently developed neural IR models.


  Click for Model/Code and Paper
Supervised Saliency Map Driven Segmentation of the Lesions in Dermoscopic Images

Jun 07, 2018
Mostafa Jahanifar, Neda Zamani Tajeddin, Babak Mohammadzadeh Asl, Ali Gooya

Lesion segmentation is the first step in most automatic melanoma recognition systems. Deficiencies and difficulties in dermoscopic images such as color inconstancy, hair occlusion, dark corners and color charts make lesion segmentation an intricate task. In order to detect the lesion in the presence of these problems, we propose a supervised saliency detection method tailored for dermoscopic images based on the discriminative regional feature integration (DRFI). DRFI method incorporates multi-level segmentation, regional contrast, property, background descriptors, and a random forest regressor to create saliency scores for each region in the image. In our improved saliency detection method, mDRFI, we have added some new features to regional property descriptors. Also, in order to achieve more robust regional background descriptors, a thresholding algorithm is proposed to obtain a new pseudo-background region. Findings reveal that mDRFI is superior to DRFI in detecting the lesion as the salient object in dermoscopic images. The proposed overall lesion segmentation framework uses detected saliency map to construct an initial mask of the lesion through thresholding and post-processing operations. The initial mask is then evolving in a level set framework to fit better on the lesion's boundaries. The results of evaluation tests on three public datasets show that our proposed segmentation method outperforms the other conventional state-of-the-art segmentation algorithms and its performance is comparable with most recent approaches that are based on deep convolutional neural networks.

* ISIC2017, JBHI 

  Click for Model/Code and Paper
Predicting Human Trustfulness from Facebook Language

Aug 16, 2018
Mohammadzaman Zamani, Anneke Buffone, H. Andrew Schwartz

Trustfulness -- one's general tendency to have confidence in unknown people or situations -- predicts many important real-world outcomes such as mental health and likelihood to cooperate with others such as clinicians. While data-driven measures of interpersonal trust have previously been introduced, here, we develop the first language-based assessment of the personality trait of trustfulness by fitting one's language to an accepted questionnaire-based trust score. Further, using trustfulness as a type of case study, we explore the role of questionnaire size as well as word count in developing language-based predictive models of users' psychological traits. We find that leveraging a longer questionnaire can yield greater test set accuracy, while, for training, we find it beneficial to include users who took smaller questionnaires which offers more observations for training. Similarly, after noting a decrease in individual prediction error as word count increased, we found a word count-weighted training scheme was helpful when there were very few users in the first place.

* In Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pages 174-181, 2018 
* CLPsych2018 

  Click for Model/Code and Paper
Residualized Factor Adaptation for Community Social Media Prediction Tasks

Aug 28, 2018
Mohammadzaman Zamani, H. Andrew Schwartz, Veronica E. Lynn, Salvatore Giorgi, Niranjan Balasubramanian

Predictive models over social media language have shown promise in capturing community outcomes, but approaches thus far largely neglect the socio-demographic context (e.g. age, education rates, race) of the community from which the language originates. For example, it may be inaccurate to assume people in Mobile, Alabama, where the population is relatively older, will use words the same way as those from San Francisco, where the median age is younger with a higher rate of college education. In this paper, we present residualized factor adaptation, a novel approach to community prediction tasks which both (a) effectively integrates community attributes, as well as (b) adapts linguistic features to community attributes (factors). We use eleven demographic and socioeconomic attributes, and evaluate our approach over five different community-level predictive tasks, spanning health (heart disease mortality, percent fair/poor health), psychology (life satisfaction), and economics (percent housing price increase, foreclosure rate). Our evaluation shows that residualized factor adaptation significantly improves 4 out of 5 community-level outcome predictions over prior state-of-the-art for incorporating socio-demographic contexts.

* Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) 

  Click for Model/Code and Paper