Models, code, and papers for "Mohit Iyyer":

Generating Question-Answer Hierarchies

Jul 21, 2019
Kalpesh Krishna, Mohit Iyyer

The process of knowledge acquisition can be viewed as a question-answer game between a student and a teacher in which the student typically starts by asking broad, open-ended questions before drilling down into specifics (Hintikka, 1981; Hakkarainen and Sintonen, 2002). This pedagogical perspective motivates a new way of representing documents. In this paper, we present SQUASH (Specificity-controlled Question-Answer Hierarchies), a novel and challenging text generation task that converts an input document into a hierarchy of question-answer pairs. Users can click on high-level questions (e.g., "Why did Frodo leave the Fellowship?") to reveal related but more specific questions (e.g., "Who did Frodo leave with?"). Using a question taxonomy loosely based on Lehnert (1978), we classify questions in existing reading comprehension datasets as either "general" or "specific". We then use these labels as input to a pipelined system centered around a conditional neural language model. We extensively evaluate the quality of the generated QA hierarchies through crowdsourced experiments and report strong empirical results.

* ACL camera ready + technical note on pipeline modifications for demo (15 pages) 

  Click for Model/Code and Paper
Encouraging Paragraph Embeddings to Remember Sentence Identity Improves Classification

Jun 09, 2019
Tu Vu, Mohit Iyyer

While paragraph embedding models are remarkably effective for downstream classification tasks, what they learn and encode into a single vector remains opaque. In this paper, we investigate a state-of-the-art paragraph embedding method proposed by Zhang et al. (2017) and discover that it cannot reliably tell whether a given sentence occurs in the input paragraph or not. We formulate a sentence content task to probe for this basic linguistic property and find that even a much simpler bag-of-words method has no trouble solving it. This result motivates us to replace the reconstruction-based objective of Zhang et al. (2017) with our sentence content probe objective in a semi-supervised setting. Despite its simplicity, our objective improves over paragraph reconstruction in terms of (1) downstream classification accuracies on benchmark datasets, (2) faster training, and (3) better generalization ability.

* Accepted as a conference paper at ACL 2019 

  Click for Model/Code and Paper
Casting Light on Invisible Cities: Computationally Engaging with Literary Criticism

Apr 17, 2019
Shufan Wang, Mohit Iyyer

Literary critics often attempt to uncover meaning in a single work of literature through careful reading and analysis. Applying natural language processing methods to aid in such literary analyses remains a challenge in digital humanities. While most previous work focuses on "distant reading" by algorithmically discovering high-level patterns from large collections of literary works, here we sharpen the focus of our methods to a single literary theory about Italo Calvino's postmodern novel Invisible Cities, which consists of 55 short descriptions of imaginary cities. Calvino has provided a classification of these cities into eleven thematic groups, but literary scholars disagree as to how trustworthy his categorization is. Due to the unique structure of this novel, we can computationally weigh in on this debate: we leverage pretrained contextualized representations to embed each city's description and use unsupervised methods to cluster these embeddings. Additionally, we compare results of our computational approach to similarity judgments generated by human readers. Our work is a first step towards incorporating natural language processing into literary criticism.

  Click for Model/Code and Paper
Syntactically Supervised Transformers for Faster Neural Machine Translation

Jun 06, 2019
Nader Akoury, Kalpesh Krishna, Mohit Iyyer

Standard decoders for neural machine translation autoregressively generate a single target token per time step, which slows inference especially for long outputs. While architectural advances such as the Transformer fully parallelize the decoder computations at training time, inference still proceeds sequentially. Recent developments in non- and semi- autoregressive decoding produce multiple tokens per time step independently of the others, which improves inference speed but deteriorates translation quality. In this work, we propose the syntactically supervised Transformer (SynST), which first autoregressively predicts a chunked parse tree before generating all of the target tokens in one shot conditioned on the predicted parse. A series of controlled experiments demonstrates that SynST decodes sentences ~ 5x faster than the baseline autoregressive Transformer while achieving higher BLEU scores than most competing methods on En-De and En-Fr datasets.

* 9 pages, 5 figures, accepted to ACL 2019 

  Click for Model/Code and Paper
Revisiting the Importance of Encoding Logic Rules in Sentiment Classification

Aug 23, 2018
Kalpesh Krishna, Preethi Jyothi, Mohit Iyyer

We analyze the performance of different sentiment classification models on syntactically complex inputs like A-but-B sentences. The first contribution of this analysis addresses reproducible research: to meaningfully compare different models, their accuracies must be averaged over far more random seeds than what has traditionally been reported. With proper averaging in place, we notice that the distillation model described in arXiv:1603.06318v4 [cs.LG], which incorporates explicit logic rules for sentiment classification, is ineffective. In contrast, using contextualized ELMo embeddings (arXiv:1802.05365v2 [cs.CL]) instead of logic rules yields significantly better performance. Additionally, we provide analysis and visualizations that demonstrate ELMo's ability to implicitly learn logic rules. Finally, a crowdsourced analysis reveals how ELMo outperforms baseline models even on sentences with ambiguous sentiment labels.

* EMNLP 2018 Camera Ready 

  Click for Model/Code and Paper
Inducing and Embedding Senses with Scaled Gumbel Softmax

Apr 22, 2018
Fenfei Guo, Mohit Iyyer, Jordan Boyd-Graber

Methods for learning word sense embeddings represent a single word with multiple sense-specific vectors. These methods should not only produce interpretable sense embeddings, but should also learn how to select which sense to use in a given context. We propose an unsupervised model that learns sense embeddings using a modified Gumbel softmax function, which allows for differentiable discrete sense selection. Our model produces sense embeddings that are competitive (and sometimes state of the art) on multiple similarity based downstream evaluations. However, performance on these downstream evaluations tasks does not correlate with interpretability of sense embeddings, as we discover through an interpretability comparison with competing multi-sense embeddings. While many previous approaches perform well on downstream evaluations, they do not produce interpretable embeddings and learn duplicated sense groups; our method achieves the best of both worlds.

  Click for Model/Code and Paper
Unsupervised Latent Tree Induction with Deep Inside-Outside Recursive Autoencoders

Apr 04, 2019
Andrew Drozdov, Pat Verga, Mohit Yadav, Mohit Iyyer, Andrew McCallum

We introduce deep inside-outside recursive autoencoders (DIORA), a fully-unsupervised method for discovering syntax that simultaneously learns representations for constituents within the induced tree. Our approach predicts each word in an input sentence conditioned on the rest of the sentence and uses inside-outside dynamic programming to consider all possible binary trees over the sentence. At test time the CKY algorithm extracts the highest scoring parse. DIORA achieves a new state-of-the-art F1 in unsupervised binary constituency parsing (unlabeled) in two benchmark datasets, WSJ and MultiNLI.

* 14 pages, 8 figures, 8 tables. NAACL 2019 

  Click for Model/Code and Paper
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks

Apr 17, 2018
Mohit Iyyer, John Wieting, Kevin Gimpel, Luke Zettlemoyer

We propose syntactically controlled paraphrase networks (SCPNs) and use them to generate adversarial examples. Given a sentence and a target syntactic form (e.g., a constituency parse), SCPNs are trained to produce a paraphrase of the sentence with the desired syntax. We show it is possible to create training data for this task by first doing backtranslation at a very large scale, and then using a parser to label the syntactic transformations that naturally occur during this process. Such data allows us to train a neural encoder-decoder model with extra inputs to specify the target syntax. A combination of automated and human evaluations show that SCPNs generate paraphrases that follow their target specifications without decreasing paraphrase quality when compared to baseline (uncontrolled) paraphrase systems. Furthermore, they are more capable of generating syntactically adversarial examples that both (1) "fool" pretrained models and (2) improve the robustness of these models to syntactic variation when used to augment their training data.

* NAACL 2018 

  Click for Model/Code and Paper
Answering Complicated Question Intents Expressed in Decomposed Question Sequences

Nov 04, 2016
Mohit Iyyer, Wen-tau Yih, Ming-Wei Chang

Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. Existing QA systems face two major problems when evaluated on our dataset: (1) handling questions that contain coreferences to previous questions or answers, and (2) matching words or phrases in a question to corresponding entries in the associated table. We conclude by proposing strategies to handle both of these issues.

  Click for Model/Code and Paper
Quizbowl: The Case for Incremental Question Answering

Apr 09, 2019
Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, Jordan Boyd-Graber

Quizbowl is a scholastic trivia competition that tests human knowledge and intelligence; additionally, it supports diverse research in question answering (QA). A Quizbowl question consists of multiple sentences whose clues are arranged by difficulty (from obscure to obvious) and uniquely identify a well-known entity such as those found on Wikipedia. Since players can answer the question at any time, an elite player (human or machine) demonstrates its superiority by answering correctly given as few clues as possible. We make two key contributions to machine learning research through Quizbowl: (1) collecting and curating a large factoid QA dataset and an accompanying gameplay dataset, and (2) developing a computational approach to playing Quizbowl that involves determining both what to answer and when to answer. Our Quizbowl system has defeated some of the best trivia players in the world over a multi-year series of exhibition matches. Throughout this paper, we show that collaborations with the vibrant Quizbowl community have contributed to the high quality of our dataset, led to new research directions, and doubled as an exciting way to engage the public with research in machine learning and natural language processing.

  Click for Model/Code and Paper
Learning to Color from Language

Apr 17, 2018
Varun Manjunatha, Mohit Iyyer, Jordan Boyd-Graber, Larry Davis

Automatic colorization is the process of adding color to greyscale images. We condition this process on language, allowing end users to manipulate a colorized image by feeding in different captions. We present two different architectures for language-conditioned colorization, both of which produce more accurate and plausible colorizations than a language-agnostic version. Through this language-based framework, we can dramatically alter colorizations by manipulating descriptive color words in captions.

* North American Chapter of the Association for Computational Linguistics (NAACL), 2018 
* 6 pages 

  Click for Model/Code and Paper
Thieves on Sesame Street! Model Extraction of BERT-based APIs

Oct 27, 2019
Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, Mohit Iyyer

We study the problem of model extraction in natural language processing, in which an adversary with only query access to a victim model attempts to reconstruct a local copy of that model. Assuming that both the adversary and victim model fine-tune a large pretrained language model such as BERT (Devlin et al. 2019), we show that the adversary does not need any real training data to successfully mount the attack. In fact, the attacker need not even use grammatical or semantically meaningful queries: we show that random sequences of words coupled with task-specific heuristics form effective queries for model extraction on a diverse set of NLP tasks including natural language inference and question answering. Our work thus highlights an exploit only made feasible by the shift towards transfer learning methods within the NLP community: for a query budget of a few hundred dollars, an attacker can extract a model that performs only slightly worse than the victim model. Finally, we study two defense strategies against model extraction---membership classification and API watermarking---which while successful against naive adversaries, are ineffective against more sophisticated ones.

* preprint, 18 pages 

  Click for Model/Code and Paper
Investigating Sports Commentator Bias within a Large Corpus of American Football Broadcasts

Oct 19, 2019
Jack Merullo, Luke Yeh, Abram Handler, Alvin Grissom II, Brendan O'Connor, Mohit Iyyer

Sports broadcasters inject drama into play-by-play commentary by building team and player narratives through subjective analyses and anecdotes. Prior studies based on small datasets and manual coding show that such theatrics evince commentator bias in sports broadcasts. To examine this phenomenon, we assemble FOOTBALL, which contains 1,455 broadcast transcripts from American football games across six decades that are automatically annotated with 250K player mentions and linked with racial metadata. We identify major confounding factors for researchers examining racial bias in FOOTBALL, and perform a computational analysis that supports conclusions from prior social science studies.

  Click for Model/Code and Paper
Pathologies of Neural Models Make Interpretations Difficult

Aug 28, 2018
Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, Jordan Boyd-Graber

One way to interpret neural model predictions is to highlight the most important input features---for example, a heatmap visualization over the words in an input sentence. In existing interpretation methods for NLP, a word's importance is determined by either input perturbation---measuring the decrease in model confidence when that word is removed---or by the gradient with respect to that word. To understand the limitations of these methods, we use input reduction, which iteratively removes the least important word from the input. This exposes pathological behaviors of neural models: the remaining words appear nonsensical to humans and are not the ones determined as important by interpretation methods. As we confirm with human experiments, the reduced examples lack information to support the prediction of any label, but models still make the same predictions with high confidence. To explain these counterintuitive results, we draw connections to adversarial examples and confidence calibration: pathological behaviors reveal difficulties in interpreting neural models trained with maximum likelihood. To mitigate their deficiencies, we fine-tune the models by encouraging high entropy outputs on reduced examples. Fine-tuned models become more interpretable under input reduction without accuracy loss on regular examples.

* EMNLP 2018 camera ready 

  Click for Model/Code and Paper
QuAC : Question Answering in Context

Aug 28, 2018
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, Luke Zettlemoyer

We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at

* EMNLP Camera Ready 

  Click for Model/Code and Paper
Deep contextualized word representations

Mar 22, 2018
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

* NAACL 2018. Originally posted to openreview 27 Oct 2017. v2 updated for NAACL camera ready 

  Click for Model/Code and Paper