Models, code, and papers for "Mung Chiang":

An Estimation and Analysis Framework for the Rasch Model

Jun 09, 2018
Andrew S. Lan, Mung Chiang, Christoph Studer

The Rasch model is widely used for item response analysis in applications ranging from recommender systems to psychology, education, and finance. While a number of estimators have been proposed for the Rasch model over the last decades, the available analytical performance guarantees are mostly asymptotic. This paper provides a framework that relies on a novel linear minimum mean-squared error (L-MMSE) estimator which enables an exact, nonasymptotic, and closed-form analysis of the parameter estimation error under the Rasch model. The proposed framework provides guidelines on the number of items and responses required to attain low estimation errors in tests or surveys. We furthermore demonstrate its efficacy on a number of real-world collaborative filtering datasets, which reveals that the proposed L-MMSE estimator performs on par with state-of-the-art nonlinear estimators in terms of predictive performance.

* To be presented at ICML 2018 

  Click for Model/Code and Paper
Linearized Binary Regression

Feb 01, 2018
Andrew S. Lan, Mung Chiang, Christoph Studer

Probit regression was first proposed by Bliss in 1934 to study mortality rates of insects. Since then, an extensive body of work has analyzed and used probit or related binary regression methods (such as logistic regression) in numerous applications and fields. This paper provides a fresh angle to such well-established binary regression methods. Concretely, we demonstrate that linearizing the probit model in combination with linear estimators performs on par with state-of-the-art nonlinear regression methods, such as posterior mean or maximum aposteriori estimation, for a broad range of real-world regression problems. We derive exact, closed-form, and nonasymptotic expressions for the mean-squared error of our linearized estimators, which clearly separates them from nonlinear regression methods that are typically difficult to analyze. We showcase the efficacy of our methods and results for a number of synthetic and real-world datasets, which demonstrates that linearized binary regression finds potential use in a variety of inference, estimation, signal processing, and machine learning applications that deal with binary-valued observations or measurements.

* To be presented at CISS ( 

  Click for Model/Code and Paper
Stock Market Prediction from WSJ: Text Mining via Sparse Matrix Factorization

Jun 27, 2014
Felix Ming Fai Wong, Zhenming Liu, Mung Chiang

We revisit the problem of predicting directional movements of stock prices based on news articles: here our algorithm uses daily articles from The Wall Street Journal to predict the closing stock prices on the same day. We propose a unified latent space model to characterize the "co-movements" between stock prices and news articles. Unlike many existing approaches, our new model is able to simultaneously leverage the correlations: (a) among stock prices, (b) among news articles, and (c) between stock prices and news articles. Thus, our model is able to make daily predictions on more than 500 stocks (most of which are not even mentioned in any news article) while having low complexity. We carry out extensive backtesting on trading strategies based on our algorithm. The result shows that our model has substantially better accuracy rate (55.7%) compared to many widely used algorithms. The return (56%) and Sharpe ratio due to a trading strategy based on our model are also much higher than baseline indices.

  Click for Model/Code and Paper
DARTS: Deceiving Autonomous Cars with Toxic Signs

May 31, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, Prateek Mittal

Sign recognition is an integral part of autonomous cars. Any misclassification of traffic signs can potentially lead to a multitude of disastrous consequences, ranging from a life-threatening accident to even a large-scale interruption of transportation services relying on autonomous cars. In this paper, we propose and examine security attacks against sign recognition systems for Deceiving Autonomous caRs with Toxic Signs (we call the proposed attacks DARTS). In particular, we introduce two novel methods to create these toxic signs. First, we propose Out-of-Distribution attacks, which expand the scope of adversarial examples by enabling the adversary to generate these starting from an arbitrary point in the image space compared to prior attacks which are restricted to existing training/test data (In-Distribution). Second, we present the Lenticular Printing attack, which relies on an optical phenomenon to deceive the traffic sign recognition system. We extensively evaluate the effectiveness of the proposed attacks in both virtual and real-world settings and consider both white-box and black-box threat models. Our results demonstrate that the proposed attacks are successful under both settings and threat models. We further show that Out-of-Distribution attacks can outperform In-Distribution attacks on classifiers defended using the adversarial training defense, exposing a new attack vector for these defenses.

* Submitted to ACM CCS 2018; Extended version of [1801.02780] Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos 

  Click for Model/Code and Paper
Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos

Mar 26, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Prateek Mittal, Mung Chiang

We propose a new real-world attack against the computer vision based systems of autonomous vehicles (AVs). Our novel Sign Embedding attack exploits the concept of adversarial examples to modify innocuous signs and advertisements in the environment such that they are classified as the adversary's desired traffic sign with high confidence. Our attack greatly expands the scope of the threat posed to AVs since adversaries are no longer restricted to just modifying existing traffic signs as in previous work. Our attack pipeline generates adversarial samples which are robust to the environmental conditions and noisy image transformations present in the physical world. We ensure this by including a variety of possible image transformations in the optimization problem used to generate adversarial samples. We verify the robustness of the adversarial samples by printing them out and carrying out drive-by tests simulating the conditions under which image capture would occur in a real-world scenario. We experimented with physical attack samples for different distances, lighting conditions and camera angles. In addition, extensive evaluations were carried out in the virtual setting for a variety of image transformations. The adversarial samples generated using our method have adversarial success rates in excess of 95% in the physical as well as virtual settings.

* Extended abstract accepted for the 1st Deep Learning and Security Workshop; 5 pages, 4 figures 

  Click for Model/Code and Paper
Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples

May 05, 2019
Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, Prateek Mittal

A large body of recent work has investigated the phenomenon of evasion attacks using adversarial examples for deep learning systems, where the addition of norm-bounded perturbations to the test inputs leads to incorrect output classification. Previous work has investigated this phenomenon in closed-world systems where training and test inputs follow a pre-specified distribution. However, real-world implementations of deep learning applications, such as autonomous driving and content classification are likely to operate in the open-world environment. In this paper, we demonstrate the success of open-world evasion attacks, where adversarial examples are generated from out-of-distribution inputs (OOD adversarial examples). In our study, we use 11 state-of-the-art neural network models trained on 3 image datasets of varying complexity. We first demonstrate that state-of-the-art detectors for out-of-distribution data are not robust against OOD adversarial examples. We then consider 5 known defenses for adversarial examples, including state-of-the-art robust training methods, and show that against these defenses, OOD adversarial examples can achieve up to 4$\times$ higher target success rates compared to adversarial examples generated from in-distribution data. We also take a quantitative look at how open-world evasion attacks may affect real-world systems. Finally, we present the first steps towards a robust open-world machine learning system.

* 18 pages, 5 figures, 9 tables 

  Click for Model/Code and Paper