Models, code, and papers for "Murray Shanahan":

Ascribing Consciousness to Artificial Intelligence

Sep 05, 2015
Murray Shanahan

This paper critically assesses the anti-functionalist stance on consciousness adopted by certain advocates of integrated information theory (IIT), a corollary of which is that human-level artificial intelligence implemented on conventional computing hardware is necessarily not conscious. The critique draws on variations of a well-known gradual neuronal replacement thought experiment, as well as bringing out tensions in IIT's treatment of self-knowledge. The aim, though, is neither to reject IIT outright nor to champion functionalism in particular. Rather, it is suggested that both ideas have something to offer a scientific understanding of consciousness, as long as they are not dressed up as solutions to illusory metaphysical problems. As for human-level AI, we must await its development before we can decide whether or not to ascribe consciousness to it.

  Click for Model/Code and Paper
Policy Consolidation for Continual Reinforcement Learning

Feb 01, 2019
Christos Kaplanis, Murray Shanahan, Claudia Clopath

We propose a method for tackling catastrophic forgetting in deep reinforcement learning that is \textit{agnostic} to the timescale of changes in the distribution of experiences, does not require knowledge of task boundaries, and can adapt in \textit{continuously} changing environments. In our \textit{policy consolidation} model, the policy network interacts with a cascade of hidden networks that simultaneously remember the agent's policy at a range of timescales and regularise the current policy by its own history, thereby improving its ability to learn without forgetting. We find that the model improves continual learning relative to baselines on a number of continuous control tasks in single-task, alternating two-task, and multi-agent competitive self-play settings.

  Click for Model/Code and Paper
Continual Reinforcement Learning with Complex Synapses

Jun 19, 2018
Christos Kaplanis, Murray Shanahan, Claudia Clopath

Unlike humans, who are capable of continual learning over their lifetimes, artificial neural networks have long been known to suffer from a phenomenon known as catastrophic forgetting, whereby new learning can lead to abrupt erasure of previously acquired knowledge. Whereas in a neural network the parameters are typically modelled as scalar values, an individual synapse in the brain comprises a complex network of interacting biochemical components that evolve at different timescales. In this paper, we show that by equipping tabular and deep reinforcement learning agents with a synaptic model that incorporates this biological complexity (Benna & Fusi, 2016), catastrophic forgetting can be mitigated at multiple timescales. In particular, we find that as well as enabling continual learning across sequential training of two simple tasks, it can also be used to overcome within-task forgetting by reducing the need for an experience replay database.

* Accepted at ICML 2018 

  Click for Model/Code and Paper
Towards Deep Symbolic Reinforcement Learning

Oct 01, 2016
Marta Garnelo, Kai Arulkumaran, Murray Shanahan

Deep reinforcement learning (DRL) brings the power of deep neural networks to bear on the generic task of trial-and-error learning, and its effectiveness has been convincingly demonstrated on tasks such as Atari video games and the game of Go. However, contemporary DRL systems inherit a number of shortcomings from the current generation of deep learning techniques. For example, they require very large datasets to work effectively, entailing that they are slow to learn even when such datasets are available. Moreover, they lack the ability to reason on an abstract level, which makes it difficult to implement high-level cognitive functions such as transfer learning, analogical reasoning, and hypothesis-based reasoning. Finally, their operation is largely opaque to humans, rendering them unsuitable for domains in which verifiability is important. In this paper, we propose an end-to-end reinforcement learning architecture comprising a neural back end and a symbolic front end with the potential to overcome each of these shortcomings. As proof-of-concept, we present a preliminary implementation of the architecture and apply it to several variants of a simple video game. We show that the resulting system -- though just a prototype -- learns effectively, and, by acquiring a set of symbolic rules that are easily comprehensible to humans, dramatically outperforms a conventional, fully neural DRL system on a stochastic variant of the game.

  Click for Model/Code and Paper
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning

Nov 22, 2017
Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, Murray Shanahan

The problem of sparse rewards is one of the hardest challenges in contemporary reinforcement learning. Hierarchical reinforcement learning (HRL) tackles this problem by using a set of temporally-extended actions, or options, each of which has its own subgoal. These subgoals are normally handcrafted for specific tasks. Here, though, we introduce a generic class of subgoals with broad applicability in the visual domain. Underlying our approach (in common with work using "auxiliary tasks") is the hypothesis that the ability to control aspects of the environment is an inherently useful skill to have. We incorporate such subgoals in an end-to-end hierarchical reinforcement learning system and test two variants of our algorithm on a number of games from the Atari suite. We highlight the advantage of our approach in one of the hardest games -- Montezuma's revenge -- for which the ability to handle sparse rewards is key. Our agent learns several times faster than the current state-of-the-art HRL agent in this game, reaching a similar level of performance. UPDATE 22/11/17: We found that a standard A3C agent with a simple shaped reward, i.e. extrinsic reward + feature control intrinsic reward, has comparable performance to our agent in Montezuma Revenge. In light of the new experiments performed, the advantage of our HRL approach can be attributed more to its ability to learn useful features from intrinsic rewards rather than its ability to explore and reuse abstracted skills with hierarchical components. This has led us to a new conclusion about the result.

  Click for Model/Code and Paper
Classifying Options for Deep Reinforcement Learning

Jun 19, 2017
Kai Arulkumaran, Nat Dilokthanakul, Murray Shanahan, Anil Anthony Bharath

In this paper we combine one method for hierarchical reinforcement learning - the options framework - with deep Q-networks (DQNs) through the use of different "option heads" on the policy network, and a supervisory network for choosing between the different options. We utilise our setup to investigate the effects of architectural constraints in subtasks with positive and negative transfer, across a range of network capacities. We empirically show that our augmented DQN has lower sample complexity when simultaneously learning subtasks with negative transfer, without degrading performance when learning subtasks with positive transfer.

* IJCAI 2016 Workshop on Deep Reinforcement Learning: Frontiers and Challenges 

  Click for Model/Code and Paper
An Explicitly Relational Neural Network Architecture

May 24, 2019
Murray Shanahan, Kyriacos Nikiforou, Antonia Creswell, Christos Kaplanis, David Barrett, Marta Garnelo

With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.

  Click for Model/Code and Paper
The Animal-AI Environment: Training and Testing Animal-Like Artificial Cognition

Sep 18, 2019
Benjamin Beyret, José Hernández-Orallo, Lucy Cheke, Marta Halina, Murray Shanahan, Matthew Crosby

Recent advances in artificial intelligence have been strongly driven by the use of game environments for training and evaluating agents. Games are often accessible and versatile, with well-defined state-transitions and goals allowing for intensive training and experimentation. However, agents trained in a particular environment are usually tested on the same or slightly varied distributions, and solutions do not necessarily imply any understanding. If we want AI systems that can model and understand their environment, we need environments that explicitly test for this. Inspired by the extensive literature on animal cognition, we present an environment that keeps all the positive elements of standard gaming environments, but is explicitly designed for the testing of animal-like artificial cognition.

* 14 pages, 34 figures (update: reduce images size) 

  Click for Model/Code and Paper
Consistent Jumpy Predictions for Videos and Scenes

Oct 02, 2018
Ananya Kumar, S. M. Ali Eslami, Danilo J. Rezende, Marta Garnelo, Fabio Viola, Edward Lockhart, Murray Shanahan

Stochastic video prediction models take in a sequence of image frames, and generate a sequence of consecutive future image frames. These models typically generate future frames in an autoregressive fashion, which is slow and requires the input and output frames to be consecutive. We introduce a model that overcomes these drawbacks by generating a latent representation from an arbitrary set of frames that can then be used to simultaneously and efficiently sample temporally consistent frames at arbitrary time-points. For example, our model can "jump" and directly sample frames at the end of the video, without sampling intermediate frames. Synthetic video evaluations confirm substantial gains in speed and functionality without loss in fidelity. We also apply our framework to a 3D scene reconstruction dataset. Here, our model is conditioned on camera location and can sample consistent sets of images for what an occluded region of a 3D scene might look like, even if there are multiple possibilities for what that region might contain. Reconstructions and videos are available at

  Click for Model/Code and Paper
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders

Jan 13, 2017
Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

We study a variant of the variational autoencoder model (VAE) with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the known problem of over-regularisation that has been shown to arise in regular VAEs also manifests itself in our model and leads to cluster degeneracy. We show that a heuristic called minimum information constraint that has been shown to mitigate this effect in VAEs can also be applied to improve unsupervised clustering performance with our model. Furthermore we analyse the effect of this heuristic and provide an intuition of the various processes with the help of visualizations. Finally, we demonstrate the performance of our model on synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct, interpretable and result in achieving competitive performance on unsupervised clustering to the state-of-the-art results.

* 12 pages, 6 figures, Under review as a conference paper at ICLR 2017 

  Click for Model/Code and Paper
SCAN: Learning Hierarchical Compositional Visual Concepts

Jun 06, 2018
Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Burgess, Matko Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis, Alexander Lerchner

The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such abstractions in the visual domain. SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner. Unlike state of the art multimodal generative model baselines, our approach requires very few pairings between symbols and images and makes no assumptions about the form of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to break away from its training data distribution and imagine novel visual concepts through symbolically instructed recombination of previously learnt concepts.

  Click for Model/Code and Paper
Conditional Neural Processes

Jul 04, 2018
Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami

Deep neural networks excel at function approximation, yet they are typically trained from scratch for each new function. On the other hand, Bayesian methods, such as Gaussian Processes (GPs), exploit prior knowledge to quickly infer the shape of a new function at test time. Yet GPs are computationally expensive, and it can be hard to design appropriate priors. In this paper we propose a family of neural models, Conditional Neural Processes (CNPs), that combine the benefits of both. CNPs are inspired by the flexibility of stochastic processes such as GPs, but are structured as neural networks and trained via gradient descent. CNPs make accurate predictions after observing only a handful of training data points, yet scale to complex functions and large datasets. We demonstrate the performance and versatility of the approach on a range of canonical machine learning tasks, including regression, classification and image completion.

  Click for Model/Code and Paper
Relational Deep Reinforcement Learning

Jun 28, 2018
Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

  Click for Model/Code and Paper