Models, code, and papers for "Nianzu Ma":

Towards a Continuous Knowledge Learning Engine for Chatbots

Feb 24, 2018
Sahisnu Mazumder, Nianzu Ma, Bing Liu

Although chatbots have been very popular in recent years, they still have some serious weaknesses which limit the scope of their applications. One major weakness is that they cannot learn new knowledge during the conversation process, i.e., their knowledge is fixed beforehand and cannot be expanded or updated during conversation. In this paper, we propose to build a general knowledge learning engine for chatbots to enable them to continuously and interactively learn new knowledge during conversations. As time goes by, they become more and more knowledgeable and better and better at learning and conversation. We model the task as an open-world knowledge base completion problem and propose a novel technique called lifelong interactive learning and inference (LiLi) to solve it. LiLi works by imitating how humans acquire knowledge and perform inference during an interactive conversation. Our experimental results show LiLi is highly promising.

  Click for Model/Code and Paper
Lifelong Learning for Sentiment Classification

Jan 09, 2018
Zhiyuan Chen, Nianzu Ma, Bing Liu

This paper proposes a novel lifelong learning (LL) approach to sentiment classification. LL mimics the human continuous learning process, i.e., retaining the knowledge learned from past tasks and use it to help future learning. In this paper, we first discuss LL in general and then LL for sentiment classification in particular. The proposed LL approach adopts a Bayesian optimization framework based on stochastic gradient descent. Our experimental results show that the proposed method outperforms baseline methods significantly, which demonstrates that lifelong learning is a promising research direction.

* ACL 2015 

  Click for Model/Code and Paper
Lifelong and Interactive Learning of Factual Knowledge in Dialogues

Jul 31, 2019
Sahisnu Mazumder, Bing Liu, Shuai Wang, Nianzu Ma

Dialogue systems are increasingly using knowledge bases (KBs) storing real-world facts to help generate quality responses. However, as the KBs are inherently incomplete and remain fixed during conversation, it limits dialogue systems' ability to answer questions and to handle questions involving entities or relations that are not in the KB. In this paper, we make an attempt to propose an engine for Continuous and Interactive Learning of Knowledge (CILK) for dialogue systems to give them the ability to continuously and interactively learn and infer new knowledge during conversations. With more knowledge accumulated over time, they will be able to learn better and answer more questions. Our empirical evaluation shows that CILK is promising.

* Accepted in SIGDIAL 2019 

  Click for Model/Code and Paper
Forward and Backward Knowledge Transfer for Sentiment Classification

Jun 08, 2019
Hao Wang, Bing Liu, Shuai Wang, Nianzu Ma, Yan Yang

This paper studies the problem of learning a sequence of sentiment classification tasks. The learned knowledge from each task is retained and used to help future or subsequent task learning. This learning paradigm is called Lifelong Learning (LL). However, existing LL methods either only transfer knowledge forward to help future learning and do not go back to improve the model of a previous task or require the training data of the previous task to retrain its model to exploit backward/reverse knowledge transfer. This paper studies reverse knowledge transfer of LL in the context of naive Bayesian (NB) classification. It aims to improve the model of a previous task by leveraging future knowledge without retraining using its training data. This is done by exploiting a key characteristic of the generative model of NB. That is, it is possible to improve the NB classifier for a task by improving its model parameters directly by using the retained knowledge from other tasks. Experimental results show that the proposed method markedly outperforms existing LL baselines.

  Click for Model/Code and Paper