Models, code, and papers for "Nigam H. Shah":

Counterfactual Reasoning for Fair Clinical Risk Prediction

Jul 14, 2019
Stephen Pfohl, Tony Duan, Daisy Yi Ding, Nigam H. Shah

The use of machine learning systems to support decision making in healthcare raises questions as to what extent these systems may introduce or exacerbate disparities in care for historically underrepresented and mistreated groups, due to biases implicitly embedded in observational data in electronic health records. To address this problem in the context of clinical risk prediction models, we develop an augmented counterfactual fairness criteria to extend the group fairness criteria of equalized odds to an individual level. We do so by requiring that the same prediction be made for a patient, and a counterfactual patient resulting from changing a sensitive attribute, if the factual and counterfactual outcomes do not differ. We investigate the extent to which the augmented counterfactual fairness criteria may be applied to develop fair models for prolonged inpatient length of stay and mortality with observational electronic health records data. As the fairness criteria is ill-defined without knowledge of the data generating process, we use a variational autoencoder to perform counterfactual inference in the context of an assumed causal graph. While our technique provides a means to trade off maintenance of fairness with reduction in predictive performance in the context of a learned generative model, further work is needed to assess the generality of this approach.

* Machine Learning for Healthcare 2019 

  Click for Model/Code and Paper
Countdown Regression: Sharp and Calibrated Survival Predictions

Jun 21, 2018
Anand Avati, Tony Duan, Kenneth Jung, Nigam H. Shah, Andrew Ng

Personalized probabilistic forecasts of time to event (such as mortality) can be crucial in decision making, especially in the clinical setting. Inspired by ideas from the meteorology literature, we approach this problem through the paradigm of maximizing sharpness of prediction distributions, subject to calibration. In regression problems, it has been shown that optimizing the continuous ranked probability score (CRPS) instead of maximum likelihood leads to sharper prediction distributions while maintaining calibration. We introduce the Survival-CRPS, a generalization of the CRPS to the time to event setting, and present right-censored and interval-censored variants. To holistically evaluate the quality of predicted distributions over time to event, we present the Survival-AUPRC evaluation metric, an analog to area under the precision-recall curve. We apply these ideas by building a recurrent neural network for mortality prediction, using an Electronic Health Record dataset covering millions of patients. We demonstrate significant benefits in models trained by the Survival-CRPS objective instead of maximum likelihood.


  Click for Model/Code and Paper
Creating Fair Models of Atherosclerotic Cardiovascular Disease Risk

Sep 16, 2018
Stephen Pfohl, Ben Marafino, Adrien Coulet, Fatima Rodriguez, Latha Palaniappan, Nigam H. Shah

Guidelines for the management of atherosclerotic cardiovascular disease (ASCVD) recommend the use of risk stratification models to identify patients most likely to benefit from cholesterol-lowering and other therapies. These models have differential performance across race and gender groups with inconsistent behavior across studies, potentially resulting in an inequitable distribution of beneficial therapy. In this work, we leverage adversarial learning and a large observational cohort extracted from electronic health records (EHRs) to develop a "fair" ASCVD risk prediction model with reduced variability in error rates across groups. We empirically demonstrate that our approach is capable of aligning the distribution of risk predictions conditioned on the outcome across several groups simultaneously for models built from high-dimensional EHR data. We also discuss the relevance of these results in the context of the empirical trade-off between fairness and model performance.


  Click for Model/Code and Paper
Improving Palliative Care with Deep Learning

Nov 17, 2017
Anand Avati, Kenneth Jung, Stephanie Harman, Lance Downing, Andrew Ng, Nigam H. Shah

Improving the quality of end-of-life care for hospitalized patients is a priority for healthcare organizations. Studies have shown that physicians tend to over-estimate prognoses, which in combination with treatment inertia results in a mismatch between patients wishes and actual care at the end of life. We describe a method to address this problem using Deep Learning and Electronic Health Record (EHR) data, which is currently being piloted, with Institutional Review Board approval, at an academic medical center. The EHR data of admitted patients are automatically evaluated by an algorithm, which brings patients who are likely to benefit from palliative care services to the attention of the Palliative Care team. The algorithm is a Deep Neural Network trained on the EHR data from previous years, to predict all-cause 3-12 month mortality of patients as a proxy for patients that could benefit from palliative care. Our predictions enable the Palliative Care team to take a proactive approach in reaching out to such patients, rather than relying on referrals from treating physicians, or conduct time consuming chart reviews of all patients. We also present a novel interpretation technique which we use to provide explanations of the model's predictions.

* IEEE International Conference on Bioinformatics and Biomedicine 2017 

  Click for Model/Code and Paper
The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data

Oct 04, 2018
Daisy Yi Ding, Chloé Simpson, Stephen Pfohl, Dave C. Kale, Kenneth Jung, Nigam H. Shah

Electronic phenotyping is the task of ascertaining whether an individual has a medical condition of interest by analyzing their medical record and is foundational in clinical informatics. Increasingly, electronic phenotyping is performed via supervised learning. We investigate the effectiveness of multitask learning for phenotyping using electronic health records (EHR) data. Multitask learning aims to improve model performance on a target task by jointly learning additional auxiliary tasks and has been used in disparate areas of machine learning. However, its utility when applied to EHR data has not been established, and prior work suggests that its benefits are inconsistent. We present experiments that elucidate when multitask learning with neural nets improves performance for phenotyping using EHR data relative to neural nets trained for a single phenotype and to well-tuned logistic regression baselines. We find that multitask neural nets consistently outperform single-task neural nets for rare phenotypes but underperform for relatively more common phenotypes. The effect size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify phenotype complexity and find that neural nets trained with or without multitask learning do not improve on simple baselines unless the phenotypes are sufficiently complex.

* Pacific Symposium on Biocomputing (PSB) 2019, Hawaii, https://psb.stanford.edu/psb-online/; 13 pages, 7 figures; updated with the camera-ready version of the manuscript 

  Click for Model/Code and Paper
Some methods for heterogeneous treatment effect estimation in high-dimensions

Jul 01, 2017
Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H. Shah, Trevor Hastie, Robert Tibshirani

When devising a course of treatment for a patient, doctors often have little quantitative evidence on which to base their decisions, beyond their medical education and published clinical trials. Stanford Health Care alone has millions of electronic medical records (EMRs) that are only just recently being leveraged to inform better treatment recommendations. These data present a unique challenge because they are high-dimensional and observational. Our goal is to make personalized treatment recommendations based on the outcomes for past patients similar to a new patient. We propose and analyze three methods for estimating heterogeneous treatment effects using observational data. Our methods perform well in simulations using a wide variety of treatment effect functions, and we present results of applying the two most promising methods to data from The SPRINT Data Analysis Challenge, from a large randomized trial of a treatment for high blood pressure.


  Click for Model/Code and Paper
A Semi-Supervised Machine Learning Approach to Detecting Recurrent Metastatic Breast Cancer Cases Using Linked Cancer Registry and Electronic Medical Record Data

Jan 17, 2019
Albee Y. Ling, Allison W. Kurian, Jennifer L. Caswell-Jin, George W. Sledge Jr., Nigam H. Shah, Suzanne R. Tamang

Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergistically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.


  Click for Model/Code and Paper
Predicting Inpatient Discharge Prioritization With Electronic Health Records

Dec 02, 2018
Anand Avati, Stephen Pfohl, Chris Lin, Thao Nguyen, Meng Zhang, Philip Hwang, Jessica Wetstone, Kenneth Jung, Andrew Ng, Nigam H. Shah

Identifying patients who will be discharged within 24 hours can improve hospital resource management and quality of care. We studied this problem using eight years of Electronic Health Records (EHR) data from Stanford Hospital. We fit models to predict 24 hour discharge across the entire inpatient population. The best performing models achieved an area under the receiver-operator characteristic curve (AUROC) of 0.85 and an AUPRC of 0.53 on a held out test set. This model was also well calibrated. Finally, we analyzed the utility of this model in a decision theoretic framework to identify regions of ROC space in which using the model increases expected utility compared to the trivial always negative or always positive classifiers.


  Click for Model/Code and Paper
Scalable and accurate deep learning for electronic health records

May 11, 2018
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Peter J. Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michaela Hardt, Jamie Irvine, Quoc Le, Kurt Litsch, Jake Marcus, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael Howell, Claire Cui, Greg Corrado, Jeff Dean

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two U.S. academic medical centers with 216,221 adult patients hospitalized for at least 24 hours. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting in-hospital mortality (AUROC across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed state-of-the-art traditional predictive models in all cases. We also present a case-study of a neural-network attribution system, which illustrates how clinicians can gain some transparency into the predictions. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios, complete with explanations that directly highlight evidence in the patient's chart.

* npj Digital Medicine 1:18 (2018) 
* Published version from https://www.nature.com/articles/s41746-018-0029-1 

  Click for Model/Code and Paper