Models, code, and papers for "Ning Zhang":

LAC-Nav: Collision-Free Mutiagent Navigation Based on The Local Action Cells

Nov 12, 2019
Li Ning, Yong Zhang

Collision avoidance is one of the most primary requirement in the decentralized multiagent navigations: while the agents are moving towards their own targets, attentions should be paid to avoid the collisions with the others. In this paper, we introduce the concept of local action cell, which provides for each agent a set of velocities that are safe to perform. Based on the realtime updated local action cells, we propose the LAC-Nav approach to navigate the agent with the properly selected velocity; and furthermore, we coupled the local action cell with an adaptive learning framework, in which the effect of selections are evaluated and used as the references for making decisions in the following updates. Through the experiments for three commonly considered scenarios, we demonstrated the efficiency of the proposed approaches, with the comparison to several widely studied strategies.

  Click for Model/Code and Paper
Sparse learning of maximum likelihood model for optimization of complex loss function

Nov 18, 2015
Ning Zhang, Prathamesh Chandrasekar

Traditional machine learning methods usually minimize a simple loss function to learn a predictive model, and then use a complex performance measure to measure the prediction performance. However, minimizing a simple loss function cannot guarantee that an optimal performance. In this paper, we study the problem of optimizing the complex performance measure directly to obtain a predictive model. We proposed to construct a maximum likelihood model for this problem, and to learn the model parameter, we minimize a com- plex loss function corresponding to the desired complex performance measure. To optimize the loss function, we approximate the upper bound of the complex loss. We also propose impose the sparsity to the model parameter to obtain a sparse model. An objective is constructed by combining the upper bound of the loss function and the sparsity of the model parameter, and we develop an iterative algorithm to minimize it by using the fast iterative shrinkage- thresholding algorithm framework. The experiments on optimization on three different complex performance measures, including F-score, receiver operating characteristic curve, and recall precision curve break even point, over three real-world applications, aircraft event recognition of civil aviation safety, in- trusion detection in wireless mesh networks, and image classification, show the advantages of the proposed method over state-of-the-art methods.

  Click for Model/Code and Paper
Map-less Navigation: A Single DRL-based Controller for Robots with Varied Dimensions

Feb 15, 2020
Wei Zhang, Yunfeng Zhang, Ning Liu

Deep reinforcement learning (DRL) has shown great potential in training control agents for map-less robot navigation. However, the trained agents are generally dependent on the employed robot in training or dimension-specific, which cannot be directly reused by robots with different dimensional configurations. To address this issue, a novel DRL-based robot navigation method is proposed in this paper. The proposed approach trains a meta-robot with DRL and then transfers the meta-skill to a robot with a different dimensional configuration (named dimension-scaled robot) using a method named dimension-variable skill transfer (DVST), referred to as DRL-DVST. During the training phase, the meta-agent learns to perform self-navigation with the meta-robot in a simulation environment. In the skill-transfer phase, the observations of the dimension-scaled robot are transferred to the meta-agent in a scaled manner, and the control policy generated by the meta-agent is scaled back to the dimension-scaled robot. Simulation and real-world experimental results indicate that robots with different sizes and angular velocity bounds can accomplish navigation tasks in unknown and dynamic environments without any retraining. This work greatly extends the application range of DRL-based navigation methods from the fixed dimensional configuration to varied dimensional configurations.

* 8 pages, 14 figures 

  Click for Model/Code and Paper
Danger-aware Weighted Advantage Composition of Deep Reinforcement Learning for Robot Navigation

Sep 11, 2018
Wei Zhang, Yunfeng Zhang, Ning Liu

Self-navigation, referring to automatically reaching the goal while avoiding collision with obstacles, is a fundamental skill of mobile robots. Currently, Deep Reinforcement Learning (DRL) can enable the robot to navigate in a more complex environment with less computation power compared to conventional methods. However, it is time-consuming and hard to train the robot to learn goal-reaching and obstacle-avoidance skills simultaneously using DRL-based algorithms. In this paper, two Dueling Deep Q Networks (DQN) named Goal Network and Avoidance Network are used to learn the goal-reaching and obstacle-avoidance skills individually. A novel method named danger-aware advantage composition is proposed to fuse the two networks together without any redesigning and retraining. The composed Navigation Network can enable the robot to reach the goal right behind the wall and to navigate in unknown complexed environment safely and quickly.

* 8 pages, 12 figures 

  Click for Model/Code and Paper
Knowledge Projection for Deep Neural Networks

Oct 26, 2017
Zhi Zhang, Guanghan Ning, Zhihai He

While deeper and wider neural networks are actively pushing the performance limits of various computer vision and machine learning tasks, they often require large sets of labeled data for effective training and suffer from extremely high computational complexity. In this paper, we will develop a new framework for training deep neural networks on datasets with limited labeled samples using cross-network knowledge projection which is able to improve the network performance while reducing the overall computational complexity significantly. Specifically, a large pre-trained teacher network is used to observe samples from the training data. A projection matrix is learned to project this teacher-level knowledge and its visual representations from an intermediate layer of the teacher network to an intermediate layer of a thinner and faster student network to guide and regulate its training process. Both the intermediate layers from the teacher network and the injection layers from the student network are adaptively selected during training by evaluating a joint loss function in an iterative manner. This knowledge projection framework allows us to use crucial knowledge learned by large networks to guide the training of thinner student networks, avoiding over-fitting, achieving better network performance, and significantly reducing the complexity. Extensive experimental results on benchmark datasets have demonstrated that our proposed knowledge projection approach outperforms existing methods, improving accuracy by up to 4% while reducing network complexity by 4 to 10 times, which is very attractive for practical applications of deep neural networks.

  Click for Model/Code and Paper
Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation

Aug 08, 2017
Guanghan Ning, Zhi Zhang, Zhihai He

Human pose estimation using deep neural networks aims to map input images with large variations into multiple body keypoints which must satisfy a set of geometric constraints and inter-dependency imposed by the human body model. This is a very challenging nonlinear manifold learning process in a very high dimensional feature space. We believe that the deep neural network, which is inherently an algebraic computation system, is not the most effecient way to capture highly sophisticated human knowledge, for example those highly coupled geometric characteristics and interdependence between keypoints in human poses. In this work, we propose to explore how external knowledge can be effectively represented and injected into the deep neural networks to guide its training process using learned projections that impose proper prior. Specifically, we use the stacked hourglass design and inception-resnet module to construct a fractal network to regress human pose images into heatmaps with no explicit graphical modeling. We encode external knowledge with visual features which are able to characterize the constraints of human body models and evaluate the fitness of intermediate network output. We then inject these external features into the neural network using a projection matrix learned using an auxiliary cost function. The effectiveness of the proposed inception-resnet module and the benefit in guided learning with knowledge projection is evaluated on two widely used benchmarks. Our approach achieves state-of-the-art performance on both datasets.

* 13 pages, 12 figures. arXiv admin note: text overlap with arXiv:1609.01743, arXiv:1702.07432, arXiv:1602.00134 by other authors 

  Click for Model/Code and Paper
Watermark retrieval from 3D printed objects via synthetic data training

May 23, 2019
Xin Zhang, Ning Jia, Ioannis Ivrissimtzis

We present a deep neural network based method for the retrieval of watermarks from images of 3D printed objects. To deal with the variability of all possible 3D printing and image acquisition settings we train the network with synthetic data. The main simulator parameters such as texture, illumination and camera position are dynamically randomized in non-realistic ways, forcing the neural network to learn the intrinsic features of the 3D printed watermarks. At the end of the pipeline, the watermark, in the form of a two-dimensional bit array, is retrieved through a series of simple image processing and statistical operations applied on the confidence map generated by the neural network. The results demonstrate that the inclusion of synthetic DR data in the training set increases the generalization power of the network, which performs better on images from previously unseen 3D printed objects. We conclude that in our application domain of information retrieval from 3D printed objects, where access to the exact CAD files of the printed objects can be assumed, one can use inexpensive synthetic data to enhance neural network training, reducing the need for the labour intensive process of creating large amounts of hand labelled real data or the need to generate photorealistic synthetic data.

  Click for Model/Code and Paper
Overlapping Sliced Inverse Regression for Dimension Reduction

Jun 23, 2018
Ning Zhang, Zhou Yu, Qiang Wu

Sliced inverse regression (SIR) is a pioneer tool for supervised dimension reduction. It identifies the effective dimension reduction space, the subspace of significant factors with intrinsic lower dimensionality. In this paper, we propose to refine the SIR algorithm through an overlapping slicing scheme. The new algorithm, called overlapping sliced inverse regression (OSIR), is able to estimate the effective dimension reduction space and determine the number of effective factors more accurately. We show that such overlapping procedure has the potential to identify the information contained in the derivatives of the inverse regression curve, which helps to explain the superiority of OSIR. We also prove that OSIR algorithm is $\sqrt n $-consistent and verify its effectiveness by simulations and real applications.

  Click for Model/Code and Paper
Do Convnets Learn Correspondence?

Nov 04, 2014
Jonathan Long, Ning Zhang, Trevor Darrell

Convolutional neural nets (convnets) trained from massive labeled datasets have substantially improved the state-of-the-art in image classification and object detection. However, visual understanding requires establishing correspondence on a finer level than object category. Given their large pooling regions and training from whole-image labels, it is not clear that convnets derive their success from an accurate correspondence model which could be used for precise localization. In this paper, we study the effectiveness of convnet activation features for tasks requiring correspondence. We present evidence that convnet features localize at a much finer scale than their receptive field sizes, that they can be used to perform intraclass alignment as well as conventional hand-engineered features, and that they outperform conventional features in keypoint prediction on objects from PASCAL VOC 2011.

  Click for Model/Code and Paper
On the Complexity of Trial and Error

Apr 18, 2013
Xiaohui Bei, Ning Chen, Shengyu Zhang

Motivated by certain applications from physics, biochemistry, economics, and computer science, in which the objects under investigation are not accessible because of various limitations, we propose a trial-and-error model to examine algorithmic issues in such situations. Given a search problem with a hidden input, we are asked to find a valid solution, to find which we can propose candidate solutions (trials), and use observed violations (errors), to prepare future proposals. In accordance with our motivating applications, we consider the fairly broad class of constraint satisfaction problems, and assume that errors are signaled by a verification oracle in the format of the index of a violated constraint (with the content of the constraint still hidden). Our discoveries are summarized as follows. On one hand, despite the seemingly very little information provided by the verification oracle, efficient algorithms do exist for a number of important problems. For the Nash, Core, Stable Matching, and SAT problems, the unknown-input versions are as hard as the corresponding known-input versions, up to a factor of polynomial. We further give almost tight bounds on the latter two problems' trial complexities. On the other hand, there are problems whose complexities are substantially increased in the unknown-input model. In particular, no time-efficient algorithms exist (under standard hardness assumptions) for Graph Isomorphism and Group Isomorphism problems. The tools used to achieve these results include order theory, strong ellipsoid method, and some non-standard reductions. Our model investigates the value of information, and our results demonstrate that the lack of input information can introduce various levels of extra difficulty. The model exhibits intimate connections with (and we hope can also serve as a useful supplement to) certain existing learning and complexity theories.

  Click for Model/Code and Paper
RF Backscatter-based State Estimation for Micro Aerial Vehicles

Dec 19, 2019
Shengkai Zhang, Wei Wang, Ning Zhang, Tao Jiang

The advances in compact and agile micro aerial vehicles (MAVs) have shown great potential in replacing human for labor-intensive or dangerous indoor investigation, such as warehouse management and fire rescue. However, the design of a state estimation system that enables autonomous flight in such dim or smoky environments presents a conundrum: conventional GPS or computer vision based solutions only work in outdoors or well-lighted texture-rich environments. This paper takes the first step to overcome this hurdle by proposing Marvel, a lightweight RF backscatter-based state estimation system for MAVs in indoors. Marvel is nonintrusive to commercial MAVs by attaching backscatter tags to their landing gears without internal hardware modifications, and works in a plug-and-play fashion that does not require any infrastructure deployment, pre-trained signatures, or even without knowing the controller's location. The enabling techniques are a new backscatter-based pose sensing module and a novel backscatter-inertial super-accuracy state estimation algorithm. We demonstrate our design by programming a commercial-off-the-shelf MAV to autonomously fly in different trajectories. The results show that Marvel supports navigation within a range of $50$ m or through three concrete walls, with an accuracy of $34$ cm for localization and $4.99^\circ$ for orientation estimation, outperforming commercial GPS-based approaches in outdoors.

* To appear at IEEE INFOCOM 2020 

  Click for Model/Code and Paper
Transparent Classification with Multilayer Logical Perceptrons and Random Binarization

Dec 10, 2019
Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang

Models with transparent inner structure and high classification performance are required to reduce potential risk and provide trust for users in domains like health care, finance, security, etc. However, existing models are hard to simultaneously satisfy the above two properties. In this paper, we propose a new hierarchical rule-based model for classification tasks, named Concept Rule Sets (CRS), which has both a strong expressive ability and a transparent inner structure. To address the challenge of efficiently learning the non-differentiable CRS model, we propose a novel neural network architecture, Multilayer Logical Perceptron (MLLP), which is a continuous version of CRS. Using MLLP and the Random Binarization (RB) method we proposed, we can search the discrete solution of CRS in continuous space using gradient descent and ensure the discrete CRS acts almost the same as the corresponding continuous MLLP. Experiments on 12 public data sets show that CRS outperforms the state-of-the-art approaches and the complexity of the learned CRS is close to the simple decision tree.

* AAAI-20 oral 

  Click for Model/Code and Paper
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data

Sep 22, 2017
Wei-Ning Hsu, Yu Zhang, James Glass

We present a factorized hierarchical variational autoencoder, which learns disentangled and interpretable representations from sequential data without supervision. Specifically, we exploit the multi-scale nature of information in sequential data by formulating it explicitly within a factorized hierarchical graphical model that imposes sequence-dependent priors and sequence-independent priors to different sets of latent variables. The model is evaluated on two speech corpora to demonstrate, qualitatively, its ability to transform speakers or linguistic content by manipulating different sets of latent variables; and quantitatively, its ability to outperform an i-vector baseline for speaker verification and reduce the word error rate by as much as 35% in mismatched train/test scenarios for automatic speech recognition tasks.

* Accepted to NIPS 2017 

  Click for Model/Code and Paper
Learning Latent Representations for Speech Generation and Transformation

Sep 22, 2017
Wei-Ning Hsu, Yu Zhang, James Glass

An ability to model a generative process and learn a latent representation for speech in an unsupervised fashion will be crucial to process vast quantities of unlabelled speech data. Recently, deep probabilistic generative models such as Variational Autoencoders (VAEs) have achieved tremendous success in modeling natural images. In this paper, we apply a convolutional VAE to model the generative process of natural speech. We derive latent space arithmetic operations to disentangle learned latent representations. We demonstrate the capability of our model to modify the phonetic content or the speaker identity for speech segments using the derived operations, without the need for parallel supervisory data.

* Interspeech 2017, pp 1273-1277 
* Accepted to Interspeech 2017 

  Click for Model/Code and Paper
Unsupervised Domain Adaptation for Robust Speech Recognition via Variational Autoencoder-Based Data Augmentation

Sep 22, 2017
Wei-Ning Hsu, Yu Zhang, James Glass

Domain mismatch between training and testing can lead to significant degradation in performance in many machine learning scenarios. Unfortunately, this is not a rare situation for automatic speech recognition deployments in real-world applications. Research on robust speech recognition can be regarded as trying to overcome this domain mismatch issue. In this paper, we address the unsupervised domain adaptation problem for robust speech recognition, where both source and target domain speech are presented, but word transcripts are only available for the source domain speech. We present novel augmentation-based methods that transform speech in a way that does not change the transcripts. Specifically, we first train a variational autoencoder on both source and target domain data (without supervision) to learn a latent representation of speech. We then transform nuisance attributes of speech that are irrelevant to recognition by modifying the latent representations, in order to augment labeled training data with additional data whose distribution is more similar to the target domain. The proposed method is evaluated on the CHiME-4 dataset and reduces the absolute word error rate (WER) by as much as 35% compared to the non-adapted baseline.

* Accepted to IEEE ASRU 2017 

  Click for Model/Code and Paper
Recurrent Neural Network Encoder with Attention for Community Question Answering

Mar 23, 2016
Wei-Ning Hsu, Yu Zhang, James Glass

We apply a general recurrent neural network (RNN) encoder framework to community question answering (cQA) tasks. Our approach does not rely on any linguistic processing, and can be applied to different languages or domains. Further improvements are observed when we extend the RNN encoders with a neural attention mechanism that encourages reasoning over entire sequences. To deal with practical issues such as data sparsity and imbalanced labels, we apply various techniques such as transfer learning and multitask learning. Our experiments on the SemEval-2016 cQA task show 10% improvement on a MAP score compared to an information retrieval-based approach, and achieve comparable performance to a strong handcrafted feature-based method.

  Click for Model/Code and Paper
Dropout Training for Support Vector Machines

Apr 16, 2014
Ning Chen, Jun Zhu, Jianfei Chen, Bo Zhang

Dropout and other feature noising schemes have shown promising results in controlling over-fitting by artificially corrupting the training data. Though extensive theoretical and empirical studies have been performed for generalized linear models, little work has been done for support vector machines (SVMs), one of the most successful approaches for supervised learning. This paper presents dropout training for linear SVMs. To deal with the intractable expectation of the non-smooth hinge loss under corrupting distributions, we develop an iteratively re-weighted least square (IRLS) algorithm by exploring data augmentation techniques. Our algorithm iteratively minimizes the expectation of a re-weighted least square problem, where the re-weights have closed-form solutions. The similar ideas are applied to develop a new IRLS algorithm for the expected logistic loss under corrupting distributions. Our algorithms offer insights on the connection and difference between the hinge loss and logistic loss in dropout training. Empirical results on several real datasets demonstrate the effectiveness of dropout training on significantly boosting the classification accuracy of linear SVMs.

  Click for Model/Code and Paper
3D Aggregated Faster R-CNN for General Lesion Detection

Jan 29, 2020
Ning Zhang, Yu Cao, Benyuan Liu, Yan Luo

Lesions are damages and abnormalities in tissues of the human body. Many of them can later turn into fatal diseases such as cancers. Detecting lesions are of great importance for early diagnosis and timely treatment. To this end, Computed Tomography (CT) scans often serve as the screening tool, allowing us to leverage the modern object detection techniques to detect the lesions. However, lesions in CT scans are often small and sparse. The local area of lesions can be very confusing, leading the region based classifier branch of Faster R-CNN easily fail. Therefore, most of the existing state-of-the-art solutions train two types of heterogeneous networks (multi-phase) separately for the candidate generation and the False Positive Reduction (FPR) purposes. In this paper, we enforce an end-to-end 3D Aggregated Faster R-CNN solution by stacking an "aggregated classifier branch" on the backbone of RPN. This classifier branch is equipped with Feature Aggregation and Local Magnification Layers to enhance the classifier branch. We demonstrate our model can achieve the state of the art performance on both LUNA16 and DeepLesion dataset. Especially, we achieve the best single-model FROC performance on LUNA16 with the inference time being 4.2s per processed scan.

  Click for Model/Code and Paper
GAN-Leaks: A Taxonomy of Membership Inference Attacks against GANs

Sep 09, 2019
Dingfan Chen, Ning Yu, Yang Zhang, Mario Fritz

In recent years, the success of deep learning has carried over from discriminative models to generative models. In particular, generative adversarial networks (GANs) have facilitated a new level of performance ranging from media manipulation to dataset re-generation. Despite the success, the potential risks of privacy breach stemming from GANs are less well explored. In this paper, we focus on membership inference attack against GANs that has the potential to reveal information about victim models' training data. Specifically, we present the first taxonomy of membership inference attacks, which encompasses not only existing attacks but also our novel ones. We also propose the first generic attack model that can be instantiated in various settings according to adversary's knowledge about the victim model. We complement our systematic analysis of attack vectors with a comprehensive experimental study, that investigates the effectiveness of these attacks w.r.t. model type, training configurations, and attack type across three diverse application scenarios ranging from images, over medical data to location data. We show consistent effectiveness in all the setups, which bridges the assumption gap and performance gap in previous study with a complete spectrum of performance across settings. We conclusively remind users to think over before publicizing any part of their models.

  Click for Model/Code and Paper