Recurrent neural networks (RNNs) are temporal networks and cumulative in nature that have shown promising results in various natural language processing tasks. Despite their success, it still remains a challenge to understand their hidden behavior. In this work, we analyze and interpret the cumulative nature of RNN via a proposed technique named as Layer-wIse-Semantic-Accumulation (LISA) for explaining decisions and detecting the most likely (i.e., saliency) patterns that the network relies on while decision making. We demonstrate (1) LISA: "How an RNN accumulates or builds semantics during its sequential processing for a given text example and expected response" (2) Example2pattern: "How the saliency patterns look like for each category in the data according to the network in decision making". We analyse the sensitiveness of RNNs about different inputs to check the increase or decrease in prediction scores and further extract the saliency patterns learned by the network. We employ two relation classification datasets: SemEval 10 Task 8 and TAC KBP Slot Filling to explain RNN predictions via the LISA and example2pattern.

* 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP2018) workshop on Analyzing and Interpreting Neural Networks for NLP (BlackBoxNLP)
Click to Read Paper
Context information around words helps in determining their actual meaning, for example "networks" used in contexts of artificial neural networks or biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. This results in an improved performance in terms of generalization, interpretability and applicability. We apply our modeling approach to seven data sets from various domains and demonstrate that our approach consistently outperforms stateof-the-art generative topic models. With the learned representations, we show on an average a gain of 9.6% (0.57 Vs 0.52) in precision at retrieval fraction 0.02 and 7.2% (0.582 Vs 0.543) in F1 for text categorization.

Click to Read Paper
The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by matching with historical tickets stored in knowledge base. A query is comprised of subject and description, while a historical ticket consists of subject, description and solution. To retrieve a relevant solution, we use textual similarity paradigm to learn similarity in the query and historical tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of asymmetric lengths, where subject is a short text but description and solution are multi-sentence texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsupervised and supervised baselines. We also show that the topic and distributed semantic features for short and long texts improved both similarity learning and retrieval.

* In the 27th International Conference on Computational Linguistics (COLING 2018) workshop on Semantic Deep Learning (SemDeep-3)
Click to Read Paper
Semi-supervised bootstrapping techniques for relationship extraction from text iteratively expand a set of initial seed instances. Due to the lack of labeled data, a key challenge in bootstrapping is semantic drift: if a false positive instance is added during an iteration, then all following iterations are contaminated. We introduce BREX, a new bootstrapping method that protects against such contamination by highly effective confidence assessment. This is achieved by using entity and template seeds jointly (as opposed to just one as in previous work), by expanding entities and templates in parallel and in a mutually constraining fashion in each iteration and by introducing higherquality similarity measures for templates. Experimental results show that BREX achieves an F1 that is 0.13 (0.87 vs. 0.74) better than the state of the art for four relationships.

* In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018)
Click to Read Paper
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.

* #ICLR2019 under review
Click to Read Paper
We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., "networks" used in the contexts artificial neural networks vs. biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. The proposed model is named as iDocNADE. (2) Due to the small number of word occurrences (i.e., lack of context) in short text and data sparsity in a corpus of few documents, the application of topic models is challenging on such texts. Therefore, we propose a simple and efficient way of incorporating external knowledge into neural autoregressive topic models: we use embeddings as a distributional prior. The proposed variants are named as DocNADE2 and iDocNADE2. We present novel neural autoregressive topic model variants that consistently outperform state-of-the-art generative topic models in terms of generalization, interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.

* AAAI2019. arXiv admin note: substantial text overlap with arXiv:1808.03793
Click to Read Paper
Deep neural networks have shown promising results for various clinical prediction tasks such as diagnosis, mortality prediction, predicting duration of stay in hospital, etc. However, training deep networks -- such as those based on Recurrent Neural Networks (RNNs) -- requires large labeled data, high computational resources, and significant hyperparameter tuning effort. In this work, we investigate as to what extent can transfer learning address these issues when using deep RNNs to model multivariate clinical time series. We consider transferring the knowledge captured in an RNN trained on several source tasks simultaneously using a large labeled dataset to build the model for a target task with limited labeled data. An RNN pre-trained on several tasks provides generic features, which are then used to build simpler linear models for new target tasks without training task-specific RNNs. For evaluation, we train a deep RNN to identify several patient phenotypes on time series from MIMIC-III database, and then use the features extracted using that RNN to build classifiers for identifying previously unseen phenotypes, and also for a seemingly unrelated task of in-hospital mortality. We demonstrate that (i) models trained on features extracted using pre-trained RNN outperform or, in the worst case, perform as well as task-specific RNNs; (ii) the models using features from pre-trained models are more robust to the size of labeled data than task-specific RNNs; and (iii) features extracted using pre-trained RNN are generic enough and perform better than typical statistical hand-crafted features.

* Accepted at Machine Learning for Medicine and Healthcare Workshop at ACM KDD 2018 Conference
Click to Read Paper
Dynamic topic modeling facilitates the identification of topical trends over time in temporal collections of unstructured documents. We introduce a novel unsupervised neural dynamic topic model named as Recurrent Neural Network-Replicated Softmax Model (RNNRSM), where the discovered topics at each time influence the topic discovery in the subsequent time steps. We account for the temporal ordering of documents by explicitly modeling a joint distribution of latent topical dependencies over time, using distributional estimators with temporal recurrent connections. Applying RNN-RSM to 19 years of articles on NLP research, we demonstrate that compared to state-of-the art topic models, RNNRSM shows better generalization, topic interpretation, evolution and trends. We also introduce a metric (named as SPAN) to quantify the capability of dynamic topic model to capture word evolution in topics over time.

* In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018)
Click to Read Paper
This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose connectionist bi-directional recurrent neural networks and introduce ranking loss for their optimization. Finally, we show that combining convolutional and recurrent neural networks using a simple voting scheme is accurate enough to improve results. Our neural models achieve state-of-the-art results on the SemEval 2010 relation classification task.

* NAACL 2016
Click to Read Paper
Past work in relation extraction mostly focuses on binary relation between entity pairs within single sentence. Recently, the NLP community has gained interest in relation extraction in entity pairs spanning multiple sentences. In this paper, we propose a novel architecture for this task: inter-sentential dependency-based neural networks (iDepNN). iDepNN models the shortest and augmented dependency paths via recurrent and recursive neural networks to extract relationships within (intra-) and across (inter-) sentence boundaries. Compared to SVM and neural network baselines, iDepNN is more robust to false positives in relationships spanning sentences. We evaluate our models on four datasets from newswire (MUC6) and medical (BioNLP shared task) domains that achieve state-of-the-art performance and show a better balance in precision and recall for inter-sentential relationships. We perform better than 11 teams participating in the BioNLP shared task 2016 and achieve a gain of 5.2% (0.587 vs 0.558) in F1 over the winning team. We also release the crosssentence annotations for MUC6.

* #AAAI2019 under review
Click to Read Paper
Although Deep Convolutional Networks (DCNs) are approaching the accuracy of human observers at object recognition, it is unknown whether they leverage similar visual representations to achieve this performance. To address this, we introduce Clicktionary, a web-based game for identifying visual features used by human observers during object recognition. Importance maps derived from the game are consistent across participants and uncorrelated with image saliency measures. These results suggest that Clicktionary identifies image regions that are meaningful and diagnostic for object recognition but different than those driving eye movements. Surprisingly, Clicktionary importance maps are only weakly correlated with relevance maps derived from DCNs trained for object recognition. Our study demonstrates that the narrowing gap between the object recognition accuracy of human observers and DCNs obscures distinct visual strategies used by each to achieve this performance.

* 9 pages, 7 figures
Click to Read Paper