Models, code, and papers for "Parisa Haghani":

From Audio to Semantics: Approaches to end-to-end spoken language understanding

Sep 24, 2018
Parisa Haghani, Arun Narayanan, Michiel Bacchiani, Galen Chuang, Neeraj Gaur, Pedro Moreno, Rohit Prabhavalkar, Zhongdi Qu, Austin Waters

Conventional spoken language understanding systems consist of two main components: an automatic speech recognition module that converts audio to a transcript, and a natural language understanding module that transforms the resulting text (or top N hypotheses) into a set of domains, intents, and arguments. These modules are typically optimized independently. In this paper, we formulate audio to semantic understanding as a sequence-to-sequence problem [1]. We propose and compare various encoder-decoder based approaches that optimize both modules jointly, in an end-to-end manner. Evaluations on a real-world task show that 1) having an intermediate text representation is crucial for the quality of the predicted semantics, especially the intent arguments and 2) jointly optimizing the full system improves overall accuracy of prediction. Compared to independently trained models, our best jointly trained model achieves similar domain and intent prediction F1 scores, but improves argument word error rate by 18% relative.


  Click for Model/Code and Paper
Toward domain-invariant speech recognition via large scale training

Aug 16, 2018
Arun Narayanan, Ananya Misra, Khe Chai Sim, Golan Pundak, Anshuman Tripathi, Mohamed Elfeky, Parisa Haghani, Trevor Strohman, Michiel Bacchiani

Current state-of-the-art automatic speech recognition systems are trained to work in specific `domains', defined based on factors like application, sampling rate and codec. When such recognizers are used in conditions that do not match the training domain, performance significantly drops. This work explores the idea of building a single domain-invariant model for varied use-cases by combining large scale training data from multiple application domains. Our final system is trained using 162,000 hours of speech. Additionally, each utterance is artificially distorted during training to simulate effects like background noise, codec distortion, and sampling rates. Our results show that, even at such a scale, a model thus trained works almost as well as those fine-tuned to specific subsets: A single model can be robust to multiple application domains, and variations like codecs and noise. More importantly, such models generalize better to unseen conditions and allow for rapid adaptation -- we show that by using as little as 10 hours of data from a new domain, an adapted domain-invariant model can match performance of a domain-specific model trained from scratch using 70 times as much data. We also highlight some of the limitations of such models and areas that need addressing in future work.


  Click for Model/Code and Paper
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Feb 21, 2019
Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.


  Click for Model/Code and Paper