Research papers and code for "Peng Fei":
We present an unsupervised representation learning approach that compactly encodes the motion dependencies in videos. Given a pair of images from a video clip, our framework learns to predict the long-term 3D motions. To reduce the complexity of the learning framework, we propose to describe the motion as a sequence of atomic 3D flows computed with RGB-D modality. We use a Recurrent Neural Network based Encoder-Decoder framework to predict these sequences of flows. We argue that in order for the decoder to reconstruct these sequences, the encoder must learn a robust video representation that captures long-term motion dependencies and spatial-temporal relations. We demonstrate the effectiveness of our learned temporal representations on activity classification across multiple modalities and datasets such as NTU RGB+D and MSR Daily Activity 3D. Our framework is generic to any input modality, i.e., RGB, Depth, and RGB-D videos.

* CVPR 2017
Click to Read Paper and Get Code
We propose a viewpoint invariant model for 3D human pose estimation from a single depth image. To achieve this, our discriminative model embeds local regions into a learned viewpoint invariant feature space. Formulated as a multi-task learning problem, our model is able to selectively predict partial poses in the presence of noise and occlusion. Our approach leverages a convolutional and recurrent network architecture with a top-down error feedback mechanism to self-correct previous pose estimates in an end-to-end manner. We evaluate our model on a previously published depth dataset and a newly collected human pose dataset containing 100K annotated depth images from extreme viewpoints. Experiments show that our model achieves competitive performance on frontal views while achieving state-of-the-art performance on alternate viewpoints.

* European Conference on Computer Vision (ECCV) 2016
Click to Read Paper and Get Code
Machine learning, especially deep neural networks, has been rapidly developed in fields including computer vision, speech recognition and reinforcement learning. Although Mini-batch SGD is one of the most popular stochastic optimization methods in training deep networks, it shows a slow convergence rate due to the large noise in gradient approximation. In this paper, we attempt to remedy this problem by building more efficient batch selection method based on typicality sampling, which reduces the error of gradient estimation in conventional Minibatch SGD. We analyze the convergence rate of the resulting typical batch SGD algorithm and compare convergence properties between Minibatch SGD and the algorithm. Experimental results demonstrate that our batch selection scheme works well and more complex Minibatch SGD variants can benefit from the proposed batch selection strategy.

* 10 pages, 4 figures, for journal
Click to Read Paper and Get Code
Face morphing attack is proved to be a serious threat to the existing face recognition systems. Although a few face morphing detection methods have been put forward, the face morphing accomplice's facial restoration remains a challenging problem. In this paper, a face-demorphing generative adversarial network (FD-GAN) is proposed to restore the accomplice's facial image. It utilizes a symmetric dual network architecture and two levels of restoration losses to separate the identity feature of the morphing accomplice. By exploiting the captured face image (containing the criminal's identity) from the face recognition system and the morphed image stored in the e-passport system (containing both criminal and accomplice's identities), the FD-GAN can effectively restore the accomplice's facial image. Experimental results and analysis demonstrate the effectiveness of the proposed scheme. It has great potential to be implemented for detecting the face morphing accomplice in a real identity verification scenario.

* 7 pages, 5 figures
Click to Read Paper and Get Code
Image feature extraction and matching is a fundamental but computation intensive task in machine vision. This paper proposes a novel FPGA-based embedded system to accelerate feature extraction and matching. It implements SURF feature point detection and BRIEF feature descriptor construction and matching. For binocular stereo vision, feature matching includes both tracking matching and stereo matching, which simultaneously provide feature point correspondences and parallax information. Our system is evaluated on a ZYNQ XC7Z045 FPGA. The result demonstrates that it can process binocular video data at a high frame rate (640$\times$480 @ 162fps). Moreover, an extensive test proves our system has robustness for image compression, blurring and illumination.

* Accepted for the 4th International Conference on Multimedia Systems and Signal Processing (ICMSSP 2019)
Click to Read Paper and Get Code
Network embedding has proved extremely useful in a variety of network analysis tasks such as node classification, link prediction, and network visualization. Almost all the existing network embedding methods learn to map the node IDs to their corresponding node embeddings. This design principle, however, hinders the existing methods from being applied in real cases. Node ID is not generalizable and, thus, the existing methods have to pay great effort in cold-start problem. The heterogeneous network usually requires extra work to encode node types, as node type is not able to be identified by node ID. Node ID carries rare information, resulting in the criticism that the existing methods are not robust to noise. To address this issue, we introduce Compositional Network Embedding, a general inductive network representation learning framework that generates node embeddings by combining node features based on the principle of compositionally. Instead of directly optimizing an embedding lookup based on arbitrary node IDs, we learn a composition function that infers node embeddings by combining the corresponding node attribute embeddings through a graph-based loss. For evaluation, we conduct the experiments on link prediction under four different settings. The results verified the effectiveness and generalization ability of compositional network embeddings, especially on unseen nodes.

Click to Read Paper and Get Code
Correlation filter (CF) based tracking algorithms have demonstrated favorable performance recently. Nevertheless, the top performance trackers always employ complicated optimization methods which constraint their real-time applications. How to accelerate the tracking speed while retaining the tracking accuracy is a significant issue. In this paper, we propose a multi-level CF-based tracking approach named MLCFT which further explores the potential capacity of CF with two-stage detection: primal detection and oriented re-detection. The cascaded detection scheme is simple but competent to prevent model drift and accelerate the speed. An effective fusion method based on relative entropy is introduced to combine the complementary features extracted from deep and shallow layers of convolutional neural networks (CNN). Moreover, a novel online model update strategy is utilized in our tracker, which enhances the tracking performance further. Experimental results demonstrate that our proposed approach outperforms the most state-of-the-art trackers while tracking at speed of exceeded 16 frames per second on challenging benchmarks.

* Accepted by ACCV'2018
Click to Read Paper and Get Code
The shortest path between two concepts in a taxonomic ontology is commonly used to represent the semantic distance between concepts in the edge-based semantic similarity measures. In the past, the edge counting is considered to be the default method for the path computation, which is simple, intuitive and has low computational complexity. However, a large lexical taxonomy of such as WordNet has the irregular densities of links between concepts due to its broad domain but. The edge counting-based path computation is powerless for this non-uniformity problem. In this paper, we advocate that the path computation is able to be separated from the edge-based similarity measures and form various general computing models. Therefore, in order to solve the problem of non-uniformity of concept density in a large taxonomic ontology, we propose a new path computing model based on the compensation of local area density of concepts, which is equal to the number of direct hyponyms of the subsumers of concepts in their shortest path. This path model considers the local area density of concepts as an extension of the edge-based path and converts the local area density divided by their depth into the compensation for edge-based path with an adjustable parameter, which idea has been proven to be consistent with the information theory. This model is a general path computing model and can be applied in various edge-based similarity algorithms. The experiment results show that the proposed path model improves the average correlation between edge-based measures with human judgments on Miller and Charles benchmark from less than 0.8 to more than 0.85, and has a big advantage in efficiency than information content (IC) computation in a dynamic ontology, thereby successfully solving the non-uniformity problem of taxonomic ontology.

* 17 pages,11 figures
Click to Read Paper and Get Code
Visual tracking is one of the most challenging computer vision problems. In order to achieve high performance visual tracking in various negative scenarios, a novel cascaded Siamese network is proposed and developed based on two different deep learning networks: a matching subnetwork and a classification subnetwork. The matching subnetwork is a fully convolutional Siamese network. According to the similarity score between the exemplar image and the candidate image, it aims to search possible object positions and crop scaled candidate patches. The classification subnetwork is designed to further evaluate the cropped candidate patches and determine the optimal tracking results based on the classification score. The matching subnetwork is trained offline and fixed online, while the classification subnetwork performs stochastic gradient descent online to learn more target-specific information. To improve the tracking performance further, an effective classification subnetwork update method based on both similarity and classification scores is utilized for updating the classification subnetwork. Extensive experimental results demonstrate that our proposed approach achieves state-of-the-art performance in recent benchmarks.

* Accepted for IEEE 26th International Conference on Image Processing (ICIP 2019)
Click to Read Paper and Get Code
In this paper, we investigate impacts of three main aspects of visual tracking, i.e., the backbone network, the attentional mechanism and the detection component, and propose a Siamese Attentional Keypoint Network, dubbed SATIN, to achieve efficient tracking and accurate localization. Firstly, a new Siamese lightweight hourglass network is specifically designed for visual tracking. It takes advantage of the benefits of the repeated bottom-up and top-down inference to capture more global and local contextual information at multiple scales. Secondly, a novel cross-attentional module is utilized to leverage both channel-wise and spatial intermediate attentional information, which enhance both discriminative and localization capabilities of feature maps. Thirdly, a keypoints detection approach is invented to track any target object by detecting the top-left corner point, the centroid point and the bottom-right corner point of its bounding box. To the best of our knowledge, we are the first to propose this approach. Therefore, our SATIN tracker not only has a strong capability to learn more effective object representations, but also computational and memory storage efficiency, either during the training or testing stage. Without bells and whistles, experimental results demonstrate that our approach achieves state-of-the-art performance on several recent benchmark datasets, at speeds far exceeding the frame-rate requirement.

Click to Read Paper and Get Code
Random data augmentation is a critical technique to avoid overfitting in training deep neural network models. However, data augmentation and network training are usually treated as two isolated processes, limiting the effectiveness of network training. Why not jointly optimize the two? We propose adversarial data augmentation to address this limitation. The main idea is to design an augmentation network (generator) that competes against a target network (discriminator) by generating `hard' augmentation operations online. The augmentation network explores the weaknesses of the target network, while the latter learns from `hard' augmentations to achieve better performance. We also design a reward/penalty strategy for effective joint training. We demonstrate our approach on the problem of human pose estimation and carry out a comprehensive experimental analysis, showing that our method can significantly improve state-of-the-art models without additional data efforts.

* CVPR 2018
Click to Read Paper and Get Code
Tracking living cells in video sequence is difficult, because of cell morphology and high similarities between cells. Tracking-by-detection methods are widely used in multi-cell tracking. We perform multi-cell tracking based on the cell centroid detection, and the performance of the detector has high impact on tracking performance. In this paper, UNet is utilized to extract inter-frame and intra-frame spatio-temporal information of cells. Detection performance of cells in mitotic phase is improved by multi-frame input. Good detection results facilitate multi-cell tracking. A mitosis detection algorithm is proposed to detect cell mitosis and the cell lineage is built up. Another UNet is utilized to acquire primary segmentation. Jointly using detection and primary segmentation, cells can be fine segmented in highly dense cell population. Experiments are conducted to evaluate the effectiveness of our method, and results show its state-of-the-art performance.

* Accepted by International Conference on Image and Graphics (ICIG 2019)
Click to Read Paper and Get Code
In this paper, we study the product title summarization problem in E-commerce applications for display on mobile devices. Comparing with conventional sentence summarization, product title summarization has some extra and essential constraints. For example, factual errors or loss of the key information are intolerable for E-commerce applications. Therefore, we abstract two more constraints for product title summarization: (i) do not introduce irrelevant information; (ii) retain the key information (e.g., brand name and commodity name). To address these issues, we propose a novel multi-source pointer network by adding a new knowledge encoder for pointer network. The first constraint is handled by pointer mechanism. For the second constraint, we restore the key information by copying words from the knowledge encoder with the help of the soft gating mechanism. For evaluation, we build a large collection of real-world product titles along with human-written short titles. Experimental results demonstrate that our model significantly outperforms the other baselines. Finally, online deployment of our proposed model has yielded a significant business impact, as measured by the click-through rate.

* 10 pages, To appear in CIKM 2018, fix mistakes in dataset stats
Click to Read Paper and Get Code
We combine generative adversarial network (GAN) with light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the neural network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. Its capacity has been broadly demonstrated via imaging various types of samples, such as USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single image super-resolution procedure. We also propose an image degrading model to generate low resolution images for training, making our approach free from the complex image registration during training dataset preparation. After a welltrained network being created, this deep learning-based imaging approach is capable of recovering a large FOV (~95 mm2), high-resolution (~1.7 {\mu}m) image at high speed (within 1 second), while not necessarily introducing any changes to the setup of existing microscopes.

* 21 pages, 9 figures and 1 table. Peng Fe and Di Jin conceived the ides, initiated the investigation. Hao Zhang, Di Jin and Peng Fei prepared the manuscript
Click to Read Paper and Get Code
Discriminative Correlation Filters based tracking algorithms exploiting conventional handcrafted features have achieved impressive results both in terms of accuracy and robustness. Template handcrafted features have shown excellent performance, but they perform poorly when the appearance of target changes rapidly such as fast motions and fast deformations. In contrast, statistical handcrafted features are insensitive to fast states changes, but they yield inferior performance in the scenarios of illumination variations and background clutters. In this work, to achieve an efficient tracking performance, we propose a novel visual tracking algorithm, named MFCMT, based on a complementary ensemble model with multiple features, including Histogram of Oriented Gradients (HOGs), Color Names (CNs) and Color Histograms (CHs). Additionally, to improve tracking results and prevent targets drift, we introduce an effective fusion method by exploiting relative entropy to coalesce all basic response maps and get an optimal response. Furthermore, we suggest a simple but efficient update strategy to boost tracking performance. Comprehensive evaluations are conducted on two tracking benchmarks demonstrate and the experimental results demonstrate that our method is competitive with numerous state-of-the-art trackers. Our tracker achieves impressive performance with faster speed on these benchmarks.

* Accepted by IVPAI 2018
Click to Read Paper and Get Code
Compared with visible object tracking, thermal infrared (TIR) object tracking can track an arbitrary target in total darkness since it cannot be influenced by illumination variations. However, there are many unwanted attributes that constrain the potentials of TIR tracking, such as the absence of visual color patterns and low resolutions. Recently, structured output support vector machine (SOSVM) and discriminative correlation filter (DCF) have been successfully applied to visible object tracking, respectively. Motivated by these, in this paper, we propose a large margin structured convolution operator (LMSCO) to achieve efficient TIR object tracking. To improve the tracking performance, we employ the spatial regularization and implicit interpolation to obtain continuous deep feature maps, including deep appearance features and deep motion features, of the TIR targets. Finally, a collaborative optimization strategy is exploited to significantly update the operators. Our approach not only inherits the advantage of the strong discriminative capability of SOSVM but also achieves accurate and robust tracking with higher-dimensional features and more dense samples. To the best of our knowledge, we are the first to incorporate the advantages of DCF and SOSVM for TIR object tracking. Comprehensive evaluations on two thermal infrared tracking benchmarks, i.e. VOT-TIR2015 and VOT-TIR2016, clearly demonstrate that our LMSCO tracker achieves impressive results and outperforms most state-of-the-art trackers in terms of accuracy and robustness with sufficient frame rate.

* Accepted as contributed paper in ICPR'18
Click to Read Paper and Get Code
Currently, many intelligence systems contain the texts from multi-sources, e.g., bulletin board system (BBS) posts, tweets and news. These texts can be ``comparative'' since they may be semantically correlated and thus provide us with different perspectives toward the same topics or events. To better organize the multi-sourced texts and obtain more comprehensive knowledge, we propose to study the novel problem of Mutual Clustering on Comparative Texts (MCCT), which aims to cluster the comparative texts simultaneously and collaboratively. The MCCT problem is difficult to address because 1) comparative texts usually present different data formats and structures and thus they are hard to organize, and 2) there lacks an effective method to connect the semantically correlated comparative texts to facilitate clustering them in an unified way. To this aim, in this paper we propose a Heterogeneous Information Network-based Text clustering framework HINT. HINT first models multi-sourced texts (e.g. news and tweets) as heterogeneous information networks by introducing the shared ``anchor texts'' to connect the comparative texts. Next, two similarity matrices based on HINT as well as a transition matrix for cross-text-source knowledge transfer are constructed. Comparative texts clustering are then conducted by utilizing the constructed matrices. Finally, a mutual clustering algorithm is also proposed to further unify the separate clustering results of the comparative texts by introducing a clustering consistency constraint. We conduct extensive experimental on three tweets-news datasets, and the results demonstrate the effectiveness and robustness of the proposed method in addressing the MCCT problem.

* Knowledge and Information System, 2019
Click to Read Paper and Get Code
User intended actions are widely seen in many areas. Forecasting these actions and taking proactive measures to optimize business outcome is a crucial step towards sustaining the steady business growth. In this work, we focus on pre- dicting attrition, which is one of typical user intended actions. Conventional attrition predictive modeling strategies suffer a few inherent drawbacks. To overcome these limitations, we propose a novel end-to-end learning scheme to keep track of the evolution of attrition patterns for the predictive modeling. It integrates user activity logs, dynamic and static user profiles based on multi-path learning. It exploits historical user records by establishing a decaying multi-snapshot technique. And finally it employs the precedent user intentions via guiding them to the subsequent learning procedure. As a result, it addresses all disadvantages of conventional methods. We evaluate our methodology on two public data repositories and one private user usage dataset provided by Adobe Creative Cloud. The extensive experiments demonstrate that it can offer the appealing performance in comparison with several existing approaches as rated by different popular metrics. Furthermore, we introduce an advanced interpretation and visualization strategy to effectively characterize the periodicity of user activity logs. It can help to pinpoint important factors that are critical to user attrition and retention and thus suggests actionable improvement targets for business practice. Our work will provide useful insights into the prediction and elucidation of other user intended actions as well.

* 10 pages, International Conference on Data Mining 2018
Click to Read Paper and Get Code
Modeling users' dynamic and evolving preferences from their historical behaviors is challenging and crucial for recommendation systems. Previous methods employ sequential neural networks (e.g., Recurrent Neural Network) to encode users' historical interactions from left to right into hidden representations for making recommendations. Although these methods achieve satisfactory results, they often assume a rigidly ordered sequence which is not always practical. We argue that such left-to-right unidirectional architectures restrict the power of the historical sequence representations. For this purpose, we introduce a Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec). However, jointly conditioning on both left and right context in deep bidirectional model would make the training become trivial since each item can indirectly ``see the target item''. To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context. Comparing with predicting the next item at each position in a sequence, the Cloze task can produce more samples to train a more powerful bidirectional model. Extensive experiments on four benchmark datasets show that our model outperforms various state-of-the-art sequential models consistently.

Click to Read Paper and Get Code