Models, code, and papers for "Pete Warden":

Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition

Apr 09, 2018
Pete Warden

Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset.


  Click for Model/Code and Paper
Visual Wake Words Dataset

Jun 12, 2019
Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, Rocky Rhodes

The emergence of Internet of Things (IoT) applications requires intelligence on the edge. Microcontrollers provide a low-cost compute platform to deploy intelligent IoT applications using machine learning at scale, but have extremely limited on-chip memory and compute capability. To deploy computer vision on such devices, we need tiny vision models that fit within a few hundred kilobytes of memory footprint in terms of peak usage and model size on device storage. To facilitate the development of microcontroller friendly models, we present a new dataset, Visual Wake Words, that represents a common microcontroller vision use-case of identifying whether a person is present in the image or not, and provides a realistic benchmark for tiny vision models. Within a limited memory footprint of 250 KB, several state-of-the-art mobile models achieve accuracy of 85-90% on the Visual Wake Words dataset. We anticipate the proposed dataset will advance the research on tiny vision models that can push the pareto-optimal boundary in terms of accuracy versus memory usage for microcontroller applications.

* 10 pages, 4 figures 

  Click for Model/Code and Paper
TensorFlow: A system for large-scale machine learning

May 31, 2016
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng

TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

* 18 pages, 9 figures; v2 has a spelling correction in the metadata 

  Click for Model/Code and Paper
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

Mar 16, 2016
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng

TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.

* Version 2 updates only the metadata, to correct the formatting of Mart\'in Abadi's name 

  Click for Model/Code and Paper