Models, code, and papers for "Preslav Nakov":

Semantic Sentiment Analysis of Twitter Data

Oct 04, 2017
Preslav Nakov

Internet and the proliferation of smart mobile devices have changed the way information is created, shared, and spreads, e.g., microblogs such as Twitter, weblogs such as LiveJournal, social networks such as Facebook, and instant messengers such as Skype and WhatsApp are now commonly used to share thoughts and opinions about anything in the surrounding world. This has resulted in the proliferation of social media content, thus creating new opportunities to study public opinion at a scale that was never possible before. Naturally, this abundance of data has quickly attracted business and research interest from various fields including marketing, political science, and social studies, among many others, which are interested in questions like these: Do people like the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about the Brexit? Answering these questions requires studying the sentiment of opinions people express in social media, which has given rise to the fast growth of the field of sentiment analysis in social media, with Twitter being especially popular for research due to its scale, representativeness, variety of topics discussed, as well as ease of public access to its messages. Here we present an overview of work on sentiment analysis on Twitter.

* Microblog sentiment analysis; Twitter opinion mining; In the Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition. 2017 

  Click for Model/Code and Paper
Robust Tuning Datasets for Statistical Machine Translation

Oct 01, 2017
Preslav Nakov, Stephan Vogel

We explore the idea of automatically crafting a tuning dataset for Statistical Machine Translation (SMT) that makes the hyper-parameters of the SMT system more robust with respect to some specific deficiencies of the parameter tuning algorithms. This is an under-explored research direction, which can allow better parameter tuning. In this paper, we achieve this goal by selecting a subset of the available sentence pairs, which are more suitable for specific combinations of optimizers, objective functions, and evaluation measures. We demonstrate the potential of the idea with the pairwise ranking optimization (PRO) optimizer, which is known to yield too short translations. We show that the learning problem can be alleviated by tuning on a subset of the development set, selected based on sentence length. In particular, using the longest 50% of the tuning sentences, we achieve two-fold tuning speedup, and improvements in BLEU score that rival those of alternatives, which fix BLEU+1's smoothing instead.

* RANLP-2017 

  Click for Model/Code and Paper
Contrastive Language Adaptation for Cross-Lingual Stance Detection

Oct 04, 2019
Mitra Mohtarami, James Glass, Preslav Nakov

We study cross-lingual stance detection, which aims to leverage labeled data in one language to identify the relative perspective (or stance) of a given document with respect to a claim in a different target language. In particular, we introduce a novel contrastive language adaptation approach applied to memory networks, which ensures accurate alignment of stances in the source and target languages, and can effectively deal with the challenge of limited labeled data in the target language. The evaluation results on public benchmark datasets and comparison against current state-of-the-art approaches demonstrate the effectiveness of our approach.

* EMNLP-2019 

  Click for Model/Code and Paper
Beyond English-Only Reading Comprehension: Experiments in Zero-Shot Multilingual Transfer for Bulgarian

Sep 06, 2019
Momchil Hardalov, Ivan Koychev, Preslav Nakov

Recently, reading comprehension models achieved near-human performance on large-scale datasets such as SQuAD, CoQA, MS Macro, RACE, etc. This is largely due to the release of pre-trained contextualized representations such as BERT and ELMo, which can be fine-tuned for the target task. Despite those advances and the creation of more challenging datasets, most of the work is still done for English. Here, we study the effectiveness of multilingual BERT fine-tuned on large-scale English datasets for reading comprehension (e.g., for RACE), and we apply it to Bulgarian multiple-choice reading comprehension. We propose a new dataset containing 2,221 questions from matriculation exams for twelfth grade in various subjects -history, biology, geography and philosophy-, and 412 additional questions from online quizzes in history. While the quiz authors gave no relevant context, we incorporate knowledge from Wikipedia, retrieving documents matching the combination of question + each answer option. Moreover, we experiment with different indexing and pre-training strategies. The evaluation results show accuracy of 42.23%, which is well above the baseline of 24.89%.

* Accepted at RANLP 2019 (13 pages, 2 figures, 6 tables) 

  Click for Model/Code and Paper
Fact-Checking Meets Fauxtography: Verifying Claims About Images

Aug 30, 2019
Dimitrina Zlatkova, Preslav Nakov, Ivan Koychev

The recent explosion of false claims in social media and on the Web in general has given rise to a lot of manual fact-checking initiatives. Unfortunately, the number of claims that need to be fact-checked is several orders of magnitude larger than what humans can handle manually. Thus, there has been a lot of research aiming at automating the process. Interestingly, previous work has largely ignored the growing number of claims about images. This is despite the fact that visual imagery is more influential than text and naturally appears alongside fake news. Here we aim at bridging this gap. In particular, we create a new dataset for this problem, and we explore a variety of features modeling the claim, the image, and the relationship between the claim and the image. The evaluation results show sizable improvements over the baseline. We release our dataset, hoping to enable further research on fact-checking claims about images.

* EMNLP-2019 
* Claims about Images; Fauxtography; Fact-Checking; Veracity; Fake News 

  Click for Model/Code and Paper
Detecting Toxicity in News Articles: Application to Bulgarian

Aug 26, 2019
Yoan Dinkov, Ivan Koychev, Preslav Nakov

Online media aim for reaching ever bigger audience and for attracting ever longer attention span. This competition creates an environment that rewards sensational, fake, and toxic news. To help limit their spread and impact, we propose and develop a news toxicity detector that can recognize various types of toxic content. While previous research primarily focused on English, here we target Bulgarian. We created a new dataset by crawling a website that for five years has been collecting Bulgarian news articles that were manually categorized into eight toxicity groups. Then we trained a multi-class classifier with nine categories: eight toxic and one non-toxic. We experimented with different representations based on ElMo, BERT, and XLM, as well as with a variety of domain-specific features. Due to the small size of our dataset, we created a separate model for each feature type, and we ultimately combined these models into a meta-classifier. The evaluation results show an accuracy of 59.0% and a macro-F1 score of 39.7%, which represent sizable improvements over the majority-class baseline (Acc=30.3%, macro-F1=5.2%).

* RANLP-2019 
* Fact-checking, source reliability, political ideology, news media, Bulgarian, RANLP-2019. arXiv admin note: text overlap with arXiv:1810.01765 

  Click for Model/Code and Paper
Beyond English-only Reading Comprehension: Experiments in Zero-Shot Multilingual Transfer for Bulgarian

Aug 05, 2019
Momchil Hardalov, Ivan Koychev, Preslav Nakov

Recently, reading comprehension models achieved near-human performance on large-scale datasets such as SQuAD, CoQA, MS Macro, RACE, etc. This is largely due to the release of pre-trained contextualized representations such as BERT and ELMo, which can be fine-tuned for the target task. Despite those advances and the creation of more challenging datasets, most of the work is still done for English. Here, we study the effectiveness of multilingual BERT fine-tuned on large-scale English datasets for reading comprehension (e.g., for RACE), and we apply it to Bulgarian multiple-choice reading comprehension. We propose a new dataset containing 2,221 questions from matriculation exams for twelfth grade in various subjects -history, biology, geography and philosophy-, and 412 additional questions from online quizzes in history. While the quiz authors gave no relevant context, we incorporate knowledge from Wikipedia, retrieving documents matching the combination of question + each answer option. Moreover, we experiment with different indexing and pre-training strategies. The evaluation results show accuracy of 42.23%, which is well above the baseline of 24.89%.

* Accepted at RANLP 2019 (13 pages, 2 figures, 6 tables) 

  Click for Model/Code and Paper
Machine Reading Comprehension for Answer Re-Ranking in Customer Support Chatbots

Feb 26, 2019
Momchil Hardalov, Ivan Koychev, Preslav Nakov

Recent advances in deep neural networks, language modeling and language generation have introduced new ideas to the field of conversational agents. As a result, deep neural models such as sequence-to-sequence, Memory Networks, and the Transformer have become key ingredients of state-of-the-art dialog systems. While those models are able to generate meaningful responses even in unseen situation, they need a lot of training data to build a reliable model. Thus, most real-world systems stuck to traditional approaches based on information retrieval and even hand-crafted rules, due to their robustness and effectiveness, especially for narrow-focused conversations. Here, we present a method that adapts a deep neural architecture from the domain of machine reading comprehension to re-rank the suggested answers from different models using the question as context. We train our model using negative sampling based on question-answer pairs from the Twitter Customer Support Dataset.The experimental results show that our re-ranking framework can improve the performance in terms of word overlap and semantics both for individual models as well as for model combinations.

* Information 2019, 10, 82 
* 13 pages, 1 figure, 4 tables 

  Click for Model/Code and Paper
Joint Multitask Learning for Community Question Answering Using Task-Specific Embeddings

Sep 24, 2018
Shafiq Joty, Lluis Marquez, Preslav Nakov

We address jointly two important tasks for Question Answering in community forums: given a new question, (i) find related existing questions, and (ii) find relevant answers to this new question. We further use an auxiliary task to complement the previous two, i.e., (iii) find good answers with respect to the thread question in a question-comment thread. We use deep neural networks (DNNs) to learn meaningful task-specific embeddings, which we then incorporate into a conditional random field (CRF) model for the multitask setting, performing joint learning over a complex graph structure. While DNNs alone achieve competitive results when trained to produce the embeddings, the CRF, which makes use of the embeddings and the dependencies between the tasks, improves the results significantly and consistently across a variety of evaluation metrics, thus showing the complementarity of DNNs and structured learning.

* community question answering, task-specific embeddings, multi-task learning, EMNLP-2018 

  Click for Model/Code and Paper
Towards Automated Customer Support

Sep 02, 2018
Momchil Hardalov, Ivan Koychev, Preslav Nakov

Recent years have seen growing interest in conversational agents, such as chatbots, which are a very good fit for automated customer support because the domain in which they need to operate is narrow. This interest was in part inspired by recent advances in neural machine translation, esp. the rise of sequence-to-sequence (seq2seq) and attention-based models such as the Transformer, which have been applied to various other tasks and have opened new research directions in question answering, chatbots, and conversational systems. Still, in many cases, it might be feasible and even preferable to use simple information retrieval techniques. Thus, here we compare three different models:(i) a retrieval model, (ii) a sequence-to-sequence model with attention, and (iii) Transformer. Our experiments with the Twitter Customer Support Dataset, which contains over two million posts from customer support services of twenty major brands, show that the seq2seq model outperforms the other two in terms of semantics and word overlap.

* Accepted as regular paper at AIMSA 2018 

  Click for Model/Code and Paper
Improving Statistical Machine Translation for a Resource-Poor Language Using Related Resource-Rich Languages

Jan 23, 2014
Preslav Ivanov Nakov, Hwee Tou Ng

We propose a novel language-independent approach for improving machine translation for resource-poor languages by exploiting their similarity to resource-rich ones. More precisely, we improve the translation from a resource-poor source language X_1 into a resource-rich language Y given a bi-text containing a limited number of parallel sentences for X_1-Y and a larger bi-text for X_2-Y for some resource-rich language X_2 that is closely related to X_1. This is achieved by taking advantage of the opportunities that vocabulary overlap and similarities between the languages X_1 and X_2 in spelling, word order, and syntax offer: (1) we improve the word alignments for the resource-poor language, (2) we further augment it with additional translation options, and (3) we take care of potential spelling differences through appropriate transliteration. The evaluation for Indonesian- >English using Malay and for Spanish -> English using Portuguese and pretending Spanish is resource-poor shows an absolute gain of up to 1.35 and 3.37 BLEU points, respectively, which is an improvement over the best rivaling approaches, while using much less additional data. Overall, our method cuts the amount of necessary "real training data by a factor of 2--5.

* Journal Of Artificial Intelligence Research, Volume 44, pages 179-222, 2012 

  Click for Model/Code and Paper
Bi-Text Alignment of Movie Subtitles for Spoken English-Arabic Statistical Machine Translation

Sep 05, 2016
Fahad Al-Obaidli, Stephen Cox, Preslav Nakov

We describe efforts towards getting better resources for English-Arabic machine translation of spoken text. In particular, we look at movie subtitles as a unique, rich resource, as subtitles in one language often get translated into other languages. Movie subtitles are not new as a resource and have been explored in previous research; however, here we create a much larger bi-text (the biggest to date), and we further generate better quality alignment for it. Given the subtitles for the same movie in different languages, a key problem is how to align them at the fragment level. Typically, this is done using length-based alignment, but for movie subtitles, there is also time information. Here we exploit this information to develop an original algorithm that outperforms the current best subtitle alignment tool, subalign. The evaluation results show that adding our bi-text to the IWSLT training bi-text yields an improvement of over two BLEU points absolute.


  Click for Model/Code and Paper
Predicting the Leading Political Ideology of YouTube Channels Using Acoustic, Textual, and Metadata Information

Oct 20, 2019
Yoan Dinkov, Ahmed Ali, Ivan Koychev, Preslav Nakov

We address the problem of predicting the leading political ideology, i.e., left-center-right bias, for YouTube channels of news media. Previous work on the problem has focused exclusively on text and on analysis of the language used, topics discussed, sentiment, and the like. In contrast, here we study videos, which yields an interesting multimodal setup. Starting with gold annotations about the leading political ideology of major world news media from Media Bias/Fact Check, we searched on YouTube to find their corresponding channels, and we downloaded a recent sample of videos from each channel. We crawled more than 1,000 YouTube hours along with the corresponding subtitles and metadata, thus producing a new multimodal dataset. We further developed a multimodal deep-learning architecture for the task. Our analysis shows that the use of acoustic signal helped to improve bias detection by more than 6% absolute over using text and metadata only. We release the dataset to the research community, hoping to help advance the field of multi-modal political bias detection.

* INTERSPEECH-2019 
* media bias, political ideology, Youtube channels, propaganda, disinformation, fake news 

  Click for Model/Code and Paper
Predicting the Role of Political Trolls in Social Media

Oct 04, 2019
Atanas Atanasov, Gianmarco De Francisci Morales, Preslav Nakov

We investigate the political roles of "Internet trolls" in social media. Political trolls, such as the ones linked to the Russian Internet Research Agency (IRA), have recently gained enormous attention for their ability to sway public opinion and even influence elections. Analysis of the online traces of trolls has shown different behavioral patterns, which target different slices of the population. However, this analysis is manual and labor-intensive, thus making it impractical as a first-response tool for newly-discovered troll farms. In this paper, we show how to automate this analysis by using machine learning in a realistic setting. In particular, we show how to classify trolls according to their political role ---left, news feed, right--- by using features extracted from social media, i.e., Twitter, in two scenarios: (i) in a traditional supervised learning scenario, where labels for trolls are available, and (ii) in a distant supervision scenario, where labels for trolls are not available, and we rely on more-commonly-available labels for news outlets mentioned by the trolls. Technically, we leverage the community structure and the text of the messages in the online social network of trolls represented as a graph, from which we extract several types of learned representations, i.e.,~embeddings, for the trolls. Experiments on the "IRA Russian Troll" dataset show that our methodology improves over the state-of-the-art in the first scenario, while providing a compelling case for the second scenario, which has not been explored in the literature thus far.

* CoNLL-2019 

  Click for Model/Code and Paper
Detecting Deception in Political Debates Using Acoustic and Textual Features

Oct 04, 2019
Daniel Kopev, Ahmed Ali, Ivan Koychev, Preslav Nakov

We present work on deception detection, where, given a spoken claim, we aim to predict its factuality. While previous work in the speech community has relied on recordings from staged setups where people were asked to tell the truth or to lie and their statements were recorded, here we use real-world political debates. Thanks to the efforts of fact-checking organizations, it is possible to obtain annotations for statements in the context of a political discourse as true, half-true, or false. Starting with such data from the CLEF-2018 CheckThat! Lab, which was limited to text, we performed alignment to the corresponding videos, thus producing a multimodal dataset. We further developed a multimodal deep-learning architecture for the task of deception detection, which yielded sizable improvements over the state of the art for the CLEF-2018 Lab task 2. Our experiments show that the use of the acoustic signal consistently helped to improve the performance compared to using textual and metadata features only, based on several different evaluation measures. We release the new dataset to the research community, hoping to help advance the overall field of multimodal deception detection.

* ASRU-2019 

  Click for Model/Code and Paper
Evaluating Pronominal Anaphora in Machine Translation: An Evaluation Measure and a Test Suite

Aug 31, 2019
Prathyusha Jwalapuram, Shafiq Joty, Irina Temnikova, Preslav Nakov

The ongoing neural revolution in machine translation has made it easier to model larger contexts beyond the sentence-level, which can potentially help resolve some discourse-level ambiguities such as pronominal anaphora, thus enabling better translations. Unfortunately, even when the resulting improvements are seen as substantial by humans, they remain virtually unnoticed by traditional automatic evaluation measures like BLEU, as only a few words end up being affected. Thus, specialized evaluation measures are needed. With this aim in mind, we contribute an extensive, targeted dataset that can be used as a test suite for pronoun translation, covering multiple source languages and different pronoun errors drawn from real system translations, for English. We further propose an evaluation measure to differentiate good and bad pronoun translations. We also conduct a user study to report correlations with human judgments.

* Accepted at EMNLP 2019 

  Click for Model/Code and Paper
A Morpho-Syntactically Informed LSTM-CRF Model for Named Entity Recognition

Aug 27, 2019
Lilia Simeonova, Kiril Simov, Petya Osenova, Preslav Nakov

We propose a morphologically informed model for named entity recognition, which is based on LSTM-CRF architecture and combines word embeddings, Bi-LSTM character embeddings, part-of-speech (POS) tags, and morphological information. While previous work has focused on learning from raw word input, using word and character embeddings only, we show that for morphologically rich languages, such as Bulgarian, access to POS information contributes more to the performance gains than the detailed morphological information. Thus, we show that named entity recognition needs only coarse-grained POS tags, but at the same time it can benefit from simultaneously using some POS information of different granularity. Our evaluation results over a standard dataset show sizable improvements over the state-of-the-art for Bulgarian NER.

* RANLP-2019 
* named entity recognition; Bulgarian NER; morphology; morpho-syntax 

  Click for Model/Code and Paper
We Built a Fake News & Click-bait Filter: What Happened Next Will Blow Your Mind!

Mar 10, 2018
Georgi Karadzhov, Pepa Gencheva, Preslav Nakov, Ivan Koychev

It is completely amazing! Fake news and click-baits have totally invaded the cyber space. Let us face it: everybody hates them for three simple reasons. Reason #2 will absolutely amaze you. What these can achieve at the time of election will completely blow your mind! Now, we all agree, this cannot go on, you know, somebody has to stop it. So, we did this research on fake news/click-bait detection and trust us, it is totally great research, it really is! Make no mistake. This is the best research ever! Seriously, come have a look, we have it all: neural networks, attention mechanism, sentiment lexicons, author profiling, you name it. Lexical features, semantic features, we absolutely have it all. And we have totally tested it, trust us! We have results, and numbers, really big numbers. The best numbers ever! Oh, and analysis, absolutely top notch analysis. Interested? Come read the shocking truth about fake news and click-bait in the Bulgarian cyber space. You won't believe what we have found!

* RANLP'2017, 7 pages, 1 figure 

  Click for Model/Code and Paper
Discourse Structure in Machine Translation Evaluation

Oct 04, 2017
Shafiq Joty, Francisco Guzmán, Lluís Màrquez, Preslav Nakov

In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.

* machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 2017 

  Click for Model/Code and Paper