Models, code, and papers for "Qun Zhao":

A Novel Trend Symbolic Aggregate Approximation for Time Series

May 01, 2019
Yufeng Yu, Yuelong Zhu, Dingsheng Wan, Qun Zhao, Huan Liu

Symbolic Aggregate approximation (SAX) is a classical symbolic approach in many time series data mining applications. However, SAX only reflects the segment mean value feature and misses important information in a segment, namely the trend of the value change in the segment. Such a miss may cause a wrong classification in some cases, since the SAX representation cannot distinguish different time series with similar average values but different trends. In this paper, we present Trend Feature Symbolic Aggregate approximation (TFSAX) to solve this problem. First, we utilize Piecewise Aggregate Approximation (PAA) approach to reduce dimensionality and discretize the mean value of each segment by SAX. Second, extract trend feature in each segment by using trend distance factor and trend shape factor. Then, design multi-resolution symbolic mapping rules to discretize trend information into symbols. We also propose a modified distance measure by integrating the SAX distance with a weighted trend distance. We show that our distance measure has a tighter lower bound to the Euclidean distance than that of the original SAX. The experimental results on diverse time series data sets demonstrate that our proposed representation significantly outperforms the original SAX representation and an improved SAX representation for classification.

* 9 pages,ACM_IMCOM2019_CFP 

  Click for Model/Code and Paper
Applications of Social Media in Hydroinformatics: A Survey

May 01, 2019
Yufeng Yu, Yuelong Zhu, Dingsheng Wan, Qun Zhao, Kai Shu, Huan Liu

Floods of research and practical applications employ social media data for a wide range of public applications, including environmental monitoring, water resource managing, disaster and emergency response.Hydroinformatics can benefit from the social media technologies with newly emerged data, techniques and analytical tools to handle large datasets, from which creative ideas and new values could be mined.This paper first proposes a 4W (What, Why, When, hoW) model and a methodological structure to better understand and represent the application of social media to hydroinformatics, then provides an overview of academic research of applying social media to hydroinformatics such as water environment, water resources, flood, drought and water Scarcity management. At last,some advanced topics and suggestions of water related social media applications from data collection, data quality management, fake news detection, privacy issues, algorithms and platforms was present to hydroinformatics managers and researchers based on previous discussion.

* 37pages 

  Click for Model/Code and Paper
Modular Generative Adversarial Networks

Apr 10, 2018
Bo Zhao, Bo Chang, Zequn Jie, Leonid Sigal

Existing methods for multi-domain image-to-image translation (or generation) attempt to directly map an input image (or a random vector) to an image in one of the output domains. However, most existing methods have limited scalability and robustness, since they require building independent models for each pair of domains in question. This leads to two significant shortcomings: (1) the need to train exponential number of pairwise models, and (2) the inability to leverage data from other domains when training a particular pairwise mapping. Inspired by recent work on module networks, this paper proposes ModularGAN for multi-domain image generation and image-to-image translation. ModularGAN consists of several reusable and composable modules that carry on different functions (e.g., encoding, decoding, transformations). These modules can be trained simultaneously, leveraging data from all domains, and then combined to construct specific GAN networks at test time, according to the specific image translation task. This leads to ModularGAN's superior flexibility of generating (or translating to) an image in any desired domain. Experimental results demonstrate that our model not only presents compelling perceptual results but also outperforms state-of-the-art methods on multi-domain facial attribute transfer.


  Click for Model/Code and Paper
Learning to Jointly Translate and Predict Dropped Pronouns with a Shared Reconstruction Mechanism

Oct 15, 2018
Longyue Wang, Zhaopeng Tu, Andy Way, Qun Liu

Pronouns are frequently omitted in pro-drop languages, such as Chinese, generally leading to significant challenges with respect to the production of complete translations. Recently, Wang et al. (2018) proposed a novel reconstruction-based approach to alleviating dropped pronoun (DP) translation problems for neural machine translation models. In this work, we improve the original model from two perspectives. First, we employ a shared reconstructor to better exploit encoder and decoder representations. Second, we jointly learn to translate and predict DPs in an end-to-end manner, to avoid the errors propagated from an external DP prediction model. Experimental results show that our approach significantly improves both translation performance and DP prediction accuracy.

* EMNLP 2018 

  Click for Model/Code and Paper
Exploiting Cross-Sentence Context for Neural Machine Translation

Jul 23, 2017
Longyue Wang, Zhaopeng Tu, Andy Way, Qun Liu

In translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a cross-sentence context-aware approach and investigate the influence of historical contextual information on the performance of neural machine translation (NMT). First, this history is summarized in a hierarchical way. We then integrate the historical representation into NMT in two strategies: 1) a warm-start of encoder and decoder states, and 2) an auxiliary context source for updating decoder states. Experimental results on a large Chinese-English translation task show that our approach significantly improves upon a strong attention-based NMT system by up to +2.1 BLEU points.


  Click for Model/Code and Paper
TITAN: A Spatiotemporal Feature Learning Framework for Traffic Incident Duration Prediction

Nov 20, 2019
Kaiqun Fu, Taoran Ji, Liang Zhao, Chang-Tien Lu

Critical incident stages identification and reasonable prediction of traffic incident duration are essential in traffic incident management. In this paper, we propose a traffic incident duration prediction model that simultaneously predicts the impact of the traffic incidents and identifies the critical groups of temporal features via a multi-task learning framework. First, we formulate a sparsity optimization problem that extracts low-level temporal features based on traffic speed readings and then generalizes higher level features as phases of traffic incidents. Second, we propose novel constraints on feature similarity exploiting prior knowledge about the spatial connectivity of the road network to predict the incident duration. The proposed problem is challenging to solve due to the orthogonality constraints, non-convexity objective, and non-smoothness penalties. We develop an algorithm based on the alternating direction method of multipliers (ADMM) framework to solve the proposed formulation. Extensive experiments and comparisons to other models on real-world traffic data and traffic incident records justify the efficacy of our model.


  Click for Model/Code and Paper
Snowball: Iterative Model Evolution and Confident Sample Discovery for Semi-Supervised Learning on Very Small Labeled Datasets

Sep 04, 2019
Yang Li, Jianhe Yuan, Zhiqun Zhao, Hao Sun, Zhihai He

In this work, we develop a joint sample discovery and iterative model evolution method for semi-supervised learning on very small labeled training sets. We propose a master-teacher-student model framework to provide multi-layer guidance during the model evolution process with multiple iterations and generations. The teacher model is constructed by performing an exponential moving average of the student models obtained from past training steps. The master network combines the knowledge of the student and teacher models with additional access to newly discovered samples. The master and teacher models are then used to guide the training of the student network by enforcing the consistence between their predictions of unlabeled samples and evolve all models when more and more samples are discovered. Our extensive experiments demonstrate that the discovering confident samples from the unlabeled dataset, once coupled with the above master-teacher-student network evolution, can significantly improve the overall semi-supervised learning performance. For example, on the CIFAR-10 dataset, with a very small set of 250 labeled samples, our method achieves an error rate of 11.81 %, more than 38 % lower than the state-of-the-art method Mean-Teacher (49.91 %).


  Click for Model/Code and Paper
Transfer Representation Learning with TSK Fuzzy System

Jan 09, 2019
Peng Xu, Zhaohong Deng, Jun Wang, Qun Zhang, Shitong Wang

Transfer learning can address the learning tasks of unlabeled data in the target domain by leveraging plenty of labeled data from a different but related source domain. A core issue in transfer learning is to learn a shared feature space in where the distributions of the data from two domains are matched. This learning process can be named as transfer representation learning (TRL). The feature transformation methods are crucial to ensure the success of TRL. The most commonly used feature transformation method in TRL is kernel-based nonlinear mapping to the high-dimensional space followed by linear dimensionality reduction. But the kernel functions are lack of interpretability and are difficult to be selected. To this end, the TSK fuzzy system (TSK-FS) is combined with transfer learning and a more intuitive and interpretable modeling method, called transfer representation learning with TSK-FS (TRL-TSK-FS) is proposed in this paper. Specifically, TRL-TSK-FS realizes TRL from two aspects. On one hand, the data in the source and target domains are transformed into the fuzzy feature space in which the distribution distance of the data between two domains is min-imized. On the other hand, discriminant information and geo-metric properties of the data are preserved by linear discriminant analysis and principal component analysis. In addition, another advantage arises with the proposed method, that is, the nonlinear transformation is realized by constructing fuzzy mapping with the antecedent part of the TSK-FS instead of kernel functions which are difficult to be selected. Extensive experiments are conducted on the text and image datasets. The results obviously show the superiority of the proposed method.

* More interpretable feature transfer learning method with rules, which has been submited to IEEE Trans. Fuzzy Systems in Sept. 27 2018 

  Click for Model/Code and Paper
Towards Interpretable and Learnable Risk Analysis for Entity Resolution

Dec 06, 2019
Zhaoqiang Chen, Qun Chen, Boyi Hou, Tianyi Duan, Zhanhuai Li, Guoliang Li

Machine-learning-based entity resolution has been widely studied. However, some entity pairs may be mislabeled by machine learning models and existing studies do not study the risk analysis problem -- predicting and interpreting which entity pairs are mislabeled. In this paper, we propose an interpretable and learnable framework for risk analysis, which aims to rank the labeled pairs based on their risks of being mislabeled. We first describe how to automatically generate interpretable risk features, and then present a learnable risk model and its training technique. Finally, we empirically evaluate the performance of the proposed approach on real data. Our extensive experiments have shown that the learning risk model can identify the mislabeled pairs with considerably higher accuracy than the existing alternatives.

* 14 pages, Accepted to SIGMOD 2020 

  Click for Model/Code and Paper
Automatic Construction of Discourse Corpora for Dialogue Translation

May 22, 2016
Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Andy Way, Qun Liu

In this paper, a novel approach is proposed to automatically construct parallel discourse corpus for dialogue machine translation. Firstly, the parallel subtitle data and its corresponding monolingual movie script data are crawled and collected from Internet. Then tags such as speaker and discourse boundary from the script data are projected to its subtitle data via an information retrieval approach in order to map monolingual discourse to bilingual texts. We not only evaluate the mapping results, but also integrate speaker information into the translation. Experiments show our proposed method can achieve 81.79% and 98.64% accuracy on speaker and dialogue boundary annotation, and speaker-based language model adaptation can obtain around 0.5 BLEU points improvement in translation qualities. Finally, we publicly release around 100K parallel discourse data with manual speaker and dialogue boundary annotation.

* 7 pages, 3 figures, LREC 2016 

  Click for Model/Code and Paper
A Deep Memory-based Architecture for Sequence-to-Sequence Learning

Jan 07, 2016
Fandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, Qun Liu

We propose DEEPMEMORY, a novel deep architecture for sequence-to-sequence learning, which performs the task through a series of nonlinear transformations from the representation of the input sequence (e.g., a Chinese sentence) to the final output sequence (e.g., translation to English). Inspired by the recently proposed Neural Turing Machine (Graves et al., 2014), we store the intermediate representations in stacked layers of memories, and use read-write operations on the memories to realize the nonlinear transformations between the representations. The types of transformations are designed in advance but the parameters are learned from data. Through layer-by-layer transformations, DEEPMEMORY can model complicated relations between sequences necessary for applications such as machine translation between distant languages. The architecture can be trained with normal back-propagation on sequenceto-sequence data, and the learning can be easily scaled up to a large corpus. DEEPMEMORY is broad enough to subsume the state-of-the-art neural translation model in (Bahdanau et al., 2015) as its special case, while significantly improving upon the model with its deeper architecture. Remarkably, DEEPMEMORY, being purely neural network-based, can achieve performance comparable to the traditional phrase-based machine translation system Moses with a small vocabulary and a modest parameter size.

* 13 pages, Under review as a conference paper at ICLR 2016 

  Click for Model/Code and Paper
PEA265: Perceptual Assessment of Video Compression Artifacts

Mar 01, 2019
Liqun Lin, Shiqi Yu, Tiesong Zhao, Member, IEEE, Zhou Wang, Fellow, IEEE

The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.

* 10 pages,15 figures,4 tables 

  Click for Model/Code and Paper
Multimodal Matching Transformer for Live Commenting

Feb 07, 2020
Chaoqun Duan, Lei Cui, Shuming Ma, Furu Wei, Conghui Zhu, Tiejun Zhao

Automatic live commenting aims to provide real-time comments on videos for viewers. It encourages users engagement on online video sites, and is also a good benchmark for video-to-text generation. Recent work on this task adopts encoder-decoder models to generate comments. However, these methods do not model the interaction between videos and comments explicitly, so they tend to generate popular comments that are often irrelevant to the videos. In this work, we aim to improve the relevance between live comments and videos by modeling the cross-modal interactions among different modalities. To this end, we propose a multimodal matching transformer to capture the relationships among comments, vision, and audio. The proposed model is based on the transformer framework and can iteratively learn the attention-aware representations for each modality. We evaluate the model on a publicly available live commenting dataset. Experiments show that the multimodal matching transformer model outperforms the state-of-the-art methods.


  Click for Model/Code and Paper
Translating Pro-Drop Languages with Reconstruction Models

Jan 10, 2018
Longyue Wang, Zhaopeng Tu, Shuming Shi, Tong Zhang, Yvette Graham, Qun Liu

Pronouns are frequently omitted in pro-drop languages, such as Chinese, generally leading to significant challenges with respect to the production of complete translations. To date, very little attention has been paid to the dropped pronoun (DP) problem within neural machine translation (NMT). In this work, we propose a novel reconstruction-based approach to alleviating DP translation problems for NMT models. Firstly, DPs within all source sentences are automatically annotated with parallel information extracted from the bilingual training corpus. Next, the annotated source sentence is reconstructed from hidden representations in the NMT model. With auxiliary training objectives, in terms of reconstruction scores, the parameters associated with the NMT model are guided to produce enhanced hidden representations that are encouraged as much as possible to embed annotated DP information. Experimental results on both Chinese-English and Japanese-English dialogue translation tasks show that the proposed approach significantly and consistently improves translation performance over a strong NMT baseline, which is directly built on the training data annotated with DPs.

* Accepted by AAAI-18 

  Click for Model/Code and Paper
A Novel Approach to Dropped Pronoun Translation

Apr 21, 2016
Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang Li, Andy Way, Qun Liu

Dropped Pronouns (DP) in which pronouns are frequently dropped in the source language but should be retained in the target language are challenge in machine translation. In response to this problem, we propose a semi-supervised approach to recall possibly missing pronouns in the translation. Firstly, we build training data for DP generation in which the DPs are automatically labelled according to the alignment information from a parallel corpus. Secondly, we build a deep learning-based DP generator for input sentences in decoding when no corresponding references exist. More specifically, the generation is two-phase: (1) DP position detection, which is modeled as a sequential labelling task with recurrent neural networks; and (2) DP prediction, which employs a multilayer perceptron with rich features. Finally, we integrate the above outputs into our translation system to recall missing pronouns by both extracting rules from the DP-labelled training data and translating the DP-generated input sentences. Experimental results show that our approach achieves a significant improvement of 1.58 BLEU points in translation performance with 66% F-score for DP generation accuracy.

* To appear in NAACL2016 

  Click for Model/Code and Paper
Gradual Machine Learning for Entity Resolution

Oct 29, 2018
Boyi Hou, Qun Chen, Yanyan Wang, Ping Zhong, Ahmed Murtadha, Zhaoqiang Chen, Zhanhuai Li

Usually considered as a classification problem, entity resolution can be very challenging on real data due to the prevalence of dirty values. The state-of-the-art solutions for ER were built on a variety of learning models (most notably deep neural networks), which require lots of accurately labeled training data. Unfortunately, high-quality labeled data usually require expensive manual work, and are therefore not readily available in many real scenarios. In this paper, we propose a novel learning paradigm for ER, called gradual machine learning, which aims to enable effective machine learning without the requirement for manual labeling effort. It begins with some easy instances in a task, which can be automatically labeled by the machine with high accuracy, and then gradually labels more challenging instances based on iterative factor graph inference. In gradual machine learning, the hard instances in a task are gradually labeled in small stages based on the estimated evidential certainty provided by the labeled easier instances. Our extensive experiments on real data have shown that the proposed approach performs considerably better than its unsupervised alternatives, and it is highly competitive with the state-of-the-art supervised techniques. Using ER as a test case, we demonstrate that gradual machine learning is a promising paradigm potentially applicable to other challenging classification tasks requiring extensive labeling effort.


  Click for Model/Code and Paper
Progressive Neural Networks for Image Classification

Apr 25, 2018
Zhi Zhang, Guanghan Ning, Yigang Cen, Yang Li, Zhiqun Zhao, Hao Sun, Zhihai He

The inference structures and computational complexity of existing deep neural networks, once trained, are fixed and remain the same for all test images. However, in practice, it is highly desirable to establish a progressive structure for deep neural networks which is able to adapt its inference process and complexity for images with different visual recognition complexity. In this work, we develop a multi-stage progressive structure with integrated confidence analysis and decision policy learning for deep neural networks. This new framework consists of a set of network units to be activated in a sequential manner with progressively increased complexity and visual recognition power. Our extensive experimental results on the CIFAR-10 and ImageNet datasets demonstrate that the proposed progressive deep neural network is able to obtain more than 10 fold complexity scalability while achieving the state-of-the-art performance using a single network model satisfying different complexity-accuracy requirements.


  Click for Model/Code and Paper
Left-Right Comparative Recurrent Model for Stereo Matching

Apr 03, 2018
Zequn Jie, Pengfei Wang, Yonggen Ling, Bo Zhao, Yunchao Wei, Jiashi Feng, Wei Liu

Leveraging the disparity information from both left and right views is crucial for stereo disparity estimation. Left-right consistency check is an effective way to enhance the disparity estimation by referring to the information from the opposite view. However, the conventional left-right consistency check is an isolated post-processing step and heavily hand-crafted. This paper proposes a novel left-right comparative recurrent model to perform left-right consistency checking jointly with disparity estimation. At each recurrent step, the model produces disparity results for both views, and then performs online left-right comparison to identify the mismatched regions which may probably contain erroneously labeled pixels. A soft attention mechanism is introduced, which employs the learned error maps for better guiding the model to selectively focus on refining the unreliable regions at the next recurrent step. In this way, the generated disparity maps are progressively improved by the proposed recurrent model. Extensive evaluations on KITTI 2015, Scene Flow and Middlebury benchmarks validate the effectiveness of our model, demonstrating that state-of-the-art stereo disparity estimation results can be achieved by this new model.

* Accepted by CVPR 2018 

  Click for Model/Code and Paper
Neural Person Search Machines

Jul 21, 2017
Hao Liu, Jiashi Feng, Zequn Jie, Karlekar Jayashree, Bo Zhao, Meibin Qi, Jianguo Jiang, Shuicheng Yan

We investigate the problem of person search in the wild in this work. Instead of comparing the query against all candidate regions generated in a query-blind manner, we propose to recursively shrink the search area from the whole image till achieving precise localization of the target person, by fully exploiting information from the query and contextual cues in every recursive search step. We develop the Neural Person Search Machines (NPSM) to implement such recursive localization for person search. Benefiting from its neural search mechanism, NPSM is able to selectively shrink its focus from a loose region to a tighter one containing the target automatically. In this process, NPSM employs an internal primitive memory component to memorize the query representation which modulates the attention and augments its robustness to other distracting regions. Evaluations on two benchmark datasets, CUHK-SYSU Person Search dataset and PRW dataset, have demonstrated that our method can outperform current state-of-the-arts in both mAP and top-1 evaluation protocols.

* ICCV2017 camera ready 

  Click for Model/Code and Paper