Research papers and code for "Qun Zhao":
Symbolic Aggregate approximation (SAX) is a classical symbolic approach in many time series data mining applications. However, SAX only reflects the segment mean value feature and misses important information in a segment, namely the trend of the value change in the segment. Such a miss may cause a wrong classification in some cases, since the SAX representation cannot distinguish different time series with similar average values but different trends. In this paper, we present Trend Feature Symbolic Aggregate approximation (TFSAX) to solve this problem. First, we utilize Piecewise Aggregate Approximation (PAA) approach to reduce dimensionality and discretize the mean value of each segment by SAX. Second, extract trend feature in each segment by using trend distance factor and trend shape factor. Then, design multi-resolution symbolic mapping rules to discretize trend information into symbols. We also propose a modified distance measure by integrating the SAX distance with a weighted trend distance. We show that our distance measure has a tighter lower bound to the Euclidean distance than that of the original SAX. The experimental results on diverse time series data sets demonstrate that our proposed representation significantly outperforms the original SAX representation and an improved SAX representation for classification.

* 9 pages,ACM_IMCOM2019_CFP
Click to Read Paper and Get Code
Floods of research and practical applications employ social media data for a wide range of public applications, including environmental monitoring, water resource managing, disaster and emergency response.Hydroinformatics can benefit from the social media technologies with newly emerged data, techniques and analytical tools to handle large datasets, from which creative ideas and new values could be mined.This paper first proposes a 4W (What, Why, When, hoW) model and a methodological structure to better understand and represent the application of social media to hydroinformatics, then provides an overview of academic research of applying social media to hydroinformatics such as water environment, water resources, flood, drought and water Scarcity management. At last,some advanced topics and suggestions of water related social media applications from data collection, data quality management, fake news detection, privacy issues, algorithms and platforms was present to hydroinformatics managers and researchers based on previous discussion.

* 37pages
Click to Read Paper and Get Code
Existing methods for multi-domain image-to-image translation (or generation) attempt to directly map an input image (or a random vector) to an image in one of the output domains. However, most existing methods have limited scalability and robustness, since they require building independent models for each pair of domains in question. This leads to two significant shortcomings: (1) the need to train exponential number of pairwise models, and (2) the inability to leverage data from other domains when training a particular pairwise mapping. Inspired by recent work on module networks, this paper proposes ModularGAN for multi-domain image generation and image-to-image translation. ModularGAN consists of several reusable and composable modules that carry on different functions (e.g., encoding, decoding, transformations). These modules can be trained simultaneously, leveraging data from all domains, and then combined to construct specific GAN networks at test time, according to the specific image translation task. This leads to ModularGAN's superior flexibility of generating (or translating to) an image in any desired domain. Experimental results demonstrate that our model not only presents compelling perceptual results but also outperforms state-of-the-art methods on multi-domain facial attribute transfer.

Click to Read Paper and Get Code
Pronouns are frequently omitted in pro-drop languages, such as Chinese, generally leading to significant challenges with respect to the production of complete translations. Recently, Wang et al. (2018) proposed a novel reconstruction-based approach to alleviating dropped pronoun (DP) translation problems for neural machine translation models. In this work, we improve the original model from two perspectives. First, we employ a shared reconstructor to better exploit encoder and decoder representations. Second, we jointly learn to translate and predict DPs in an end-to-end manner, to avoid the errors propagated from an external DP prediction model. Experimental results show that our approach significantly improves both translation performance and DP prediction accuracy.

* EMNLP 2018
Click to Read Paper and Get Code
In translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a cross-sentence context-aware approach and investigate the influence of historical contextual information on the performance of neural machine translation (NMT). First, this history is summarized in a hierarchical way. We then integrate the historical representation into NMT in two strategies: 1) a warm-start of encoder and decoder states, and 2) an auxiliary context source for updating decoder states. Experimental results on a large Chinese-English translation task show that our approach significantly improves upon a strong attention-based NMT system by up to +2.1 BLEU points.

Click to Read Paper and Get Code
In this work, we develop a joint sample discovery and iterative model evolution method for semi-supervised learning on very small labeled training sets. We propose a master-teacher-student model framework to provide multi-layer guidance during the model evolution process with multiple iterations and generations. The teacher model is constructed by performing an exponential moving average of the student models obtained from past training steps. The master network combines the knowledge of the student and teacher models with additional access to newly discovered samples. The master and teacher models are then used to guide the training of the student network by enforcing the consistence between their predictions of unlabeled samples and evolve all models when more and more samples are discovered. Our extensive experiments demonstrate that the discovering confident samples from the unlabeled dataset, once coupled with the above master-teacher-student network evolution, can significantly improve the overall semi-supervised learning performance. For example, on the CIFAR-10 dataset, with a very small set of 250 labeled samples, our method achieves an error rate of 11.81 %, more than 38 % lower than the state-of-the-art method Mean-Teacher (49.91 %).

Click to Read Paper and Get Code
Transfer learning can address the learning tasks of unlabeled data in the target domain by leveraging plenty of labeled data from a different but related source domain. A core issue in transfer learning is to learn a shared feature space in where the distributions of the data from two domains are matched. This learning process can be named as transfer representation learning (TRL). The feature transformation methods are crucial to ensure the success of TRL. The most commonly used feature transformation method in TRL is kernel-based nonlinear mapping to the high-dimensional space followed by linear dimensionality reduction. But the kernel functions are lack of interpretability and are difficult to be selected. To this end, the TSK fuzzy system (TSK-FS) is combined with transfer learning and a more intuitive and interpretable modeling method, called transfer representation learning with TSK-FS (TRL-TSK-FS) is proposed in this paper. Specifically, TRL-TSK-FS realizes TRL from two aspects. On one hand, the data in the source and target domains are transformed into the fuzzy feature space in which the distribution distance of the data between two domains is min-imized. On the other hand, discriminant information and geo-metric properties of the data are preserved by linear discriminant analysis and principal component analysis. In addition, another advantage arises with the proposed method, that is, the nonlinear transformation is realized by constructing fuzzy mapping with the antecedent part of the TSK-FS instead of kernel functions which are difficult to be selected. Extensive experiments are conducted on the text and image datasets. The results obviously show the superiority of the proposed method.

* More interpretable feature transfer learning method with rules, which has been submited to IEEE Trans. Fuzzy Systems in Sept. 27 2018
Click to Read Paper and Get Code
In this paper, a novel approach is proposed to automatically construct parallel discourse corpus for dialogue machine translation. Firstly, the parallel subtitle data and its corresponding monolingual movie script data are crawled and collected from Internet. Then tags such as speaker and discourse boundary from the script data are projected to its subtitle data via an information retrieval approach in order to map monolingual discourse to bilingual texts. We not only evaluate the mapping results, but also integrate speaker information into the translation. Experiments show our proposed method can achieve 81.79% and 98.64% accuracy on speaker and dialogue boundary annotation, and speaker-based language model adaptation can obtain around 0.5 BLEU points improvement in translation qualities. Finally, we publicly release around 100K parallel discourse data with manual speaker and dialogue boundary annotation.

* 7 pages, 3 figures, LREC 2016
Click to Read Paper and Get Code
We propose DEEPMEMORY, a novel deep architecture for sequence-to-sequence learning, which performs the task through a series of nonlinear transformations from the representation of the input sequence (e.g., a Chinese sentence) to the final output sequence (e.g., translation to English). Inspired by the recently proposed Neural Turing Machine (Graves et al., 2014), we store the intermediate representations in stacked layers of memories, and use read-write operations on the memories to realize the nonlinear transformations between the representations. The types of transformations are designed in advance but the parameters are learned from data. Through layer-by-layer transformations, DEEPMEMORY can model complicated relations between sequences necessary for applications such as machine translation between distant languages. The architecture can be trained with normal back-propagation on sequenceto-sequence data, and the learning can be easily scaled up to a large corpus. DEEPMEMORY is broad enough to subsume the state-of-the-art neural translation model in (Bahdanau et al., 2015) as its special case, while significantly improving upon the model with its deeper architecture. Remarkably, DEEPMEMORY, being purely neural network-based, can achieve performance comparable to the traditional phrase-based machine translation system Moses with a small vocabulary and a modest parameter size.

* 13 pages, Under review as a conference paper at ICLR 2016
Click to Read Paper and Get Code
The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.

* 10 pages,15 figures,4 tables
Click to Read Paper and Get Code
Pronouns are frequently omitted in pro-drop languages, such as Chinese, generally leading to significant challenges with respect to the production of complete translations. To date, very little attention has been paid to the dropped pronoun (DP) problem within neural machine translation (NMT). In this work, we propose a novel reconstruction-based approach to alleviating DP translation problems for NMT models. Firstly, DPs within all source sentences are automatically annotated with parallel information extracted from the bilingual training corpus. Next, the annotated source sentence is reconstructed from hidden representations in the NMT model. With auxiliary training objectives, in terms of reconstruction scores, the parameters associated with the NMT model are guided to produce enhanced hidden representations that are encouraged as much as possible to embed annotated DP information. Experimental results on both Chinese-English and Japanese-English dialogue translation tasks show that the proposed approach significantly and consistently improves translation performance over a strong NMT baseline, which is directly built on the training data annotated with DPs.

* Accepted by AAAI-18
Click to Read Paper and Get Code
Dropped Pronouns (DP) in which pronouns are frequently dropped in the source language but should be retained in the target language are challenge in machine translation. In response to this problem, we propose a semi-supervised approach to recall possibly missing pronouns in the translation. Firstly, we build training data for DP generation in which the DPs are automatically labelled according to the alignment information from a parallel corpus. Secondly, we build a deep learning-based DP generator for input sentences in decoding when no corresponding references exist. More specifically, the generation is two-phase: (1) DP position detection, which is modeled as a sequential labelling task with recurrent neural networks; and (2) DP prediction, which employs a multilayer perceptron with rich features. Finally, we integrate the above outputs into our translation system to recall missing pronouns by both extracting rules from the DP-labelled training data and translating the DP-generated input sentences. Experimental results show that our approach achieves a significant improvement of 1.58 BLEU points in translation performance with 66% F-score for DP generation accuracy.

* To appear in NAACL2016
Click to Read Paper and Get Code
Usually considered as a classification problem, entity resolution can be very challenging on real data due to the prevalence of dirty values. The state-of-the-art solutions for ER were built on a variety of learning models (most notably deep neural networks), which require lots of accurately labeled training data. Unfortunately, high-quality labeled data usually require expensive manual work, and are therefore not readily available in many real scenarios. In this paper, we propose a novel learning paradigm for ER, called gradual machine learning, which aims to enable effective machine learning without the requirement for manual labeling effort. It begins with some easy instances in a task, which can be automatically labeled by the machine with high accuracy, and then gradually labels more challenging instances based on iterative factor graph inference. In gradual machine learning, the hard instances in a task are gradually labeled in small stages based on the estimated evidential certainty provided by the labeled easier instances. Our extensive experiments on real data have shown that the proposed approach performs considerably better than its unsupervised alternatives, and it is highly competitive with the state-of-the-art supervised techniques. Using ER as a test case, we demonstrate that gradual machine learning is a promising paradigm potentially applicable to other challenging classification tasks requiring extensive labeling effort.

Click to Read Paper and Get Code
The inference structures and computational complexity of existing deep neural networks, once trained, are fixed and remain the same for all test images. However, in practice, it is highly desirable to establish a progressive structure for deep neural networks which is able to adapt its inference process and complexity for images with different visual recognition complexity. In this work, we develop a multi-stage progressive structure with integrated confidence analysis and decision policy learning for deep neural networks. This new framework consists of a set of network units to be activated in a sequential manner with progressively increased complexity and visual recognition power. Our extensive experimental results on the CIFAR-10 and ImageNet datasets demonstrate that the proposed progressive deep neural network is able to obtain more than 10 fold complexity scalability while achieving the state-of-the-art performance using a single network model satisfying different complexity-accuracy requirements.

Click to Read Paper and Get Code
Leveraging the disparity information from both left and right views is crucial for stereo disparity estimation. Left-right consistency check is an effective way to enhance the disparity estimation by referring to the information from the opposite view. However, the conventional left-right consistency check is an isolated post-processing step and heavily hand-crafted. This paper proposes a novel left-right comparative recurrent model to perform left-right consistency checking jointly with disparity estimation. At each recurrent step, the model produces disparity results for both views, and then performs online left-right comparison to identify the mismatched regions which may probably contain erroneously labeled pixels. A soft attention mechanism is introduced, which employs the learned error maps for better guiding the model to selectively focus on refining the unreliable regions at the next recurrent step. In this way, the generated disparity maps are progressively improved by the proposed recurrent model. Extensive evaluations on KITTI 2015, Scene Flow and Middlebury benchmarks validate the effectiveness of our model, demonstrating that state-of-the-art stereo disparity estimation results can be achieved by this new model.

* Accepted by CVPR 2018
Click to Read Paper and Get Code
We investigate the problem of person search in the wild in this work. Instead of comparing the query against all candidate regions generated in a query-blind manner, we propose to recursively shrink the search area from the whole image till achieving precise localization of the target person, by fully exploiting information from the query and contextual cues in every recursive search step. We develop the Neural Person Search Machines (NPSM) to implement such recursive localization for person search. Benefiting from its neural search mechanism, NPSM is able to selectively shrink its focus from a loose region to a tighter one containing the target automatically. In this process, NPSM employs an internal primitive memory component to memorize the query representation which modulates the attention and augments its robustness to other distracting regions. Evaluations on two benchmark datasets, CUHK-SYSU Person Search dataset and PRW dataset, have demonstrated that our method can outperform current state-of-the-arts in both mAP and top-1 evaluation protocols.

* ICCV2017 camera ready
Click to Read Paper and Get Code