Research papers and code for "Radha Poovendran":
Deep neural networks are known to be vulnerable to adversarial examples, i.e., images that are maliciously perturbed to fool the model. Generating adversarial examples has been mostly limited to finding small perturbations that maximize the model prediction error. Such images, however, contain artificial perturbations that make them somewhat distinguishable from natural images. This property is used by several defense methods to counter adversarial examples by applying denoising filters or training the model to be robust to small perturbations. In this paper, we introduce a new class of adversarial examples, namely "Semantic Adversarial Examples," as images that are arbitrarily perturbed to fool the model, but in such a way that the modified image semantically represents the same object as the original image. We formulate the problem of generating such images as a constrained optimization problem and develop an adversarial transformation based on the shape bias property of human cognitive system. In our method, we generate adversarial images by first converting the RGB image into the HSV (Hue, Saturation and Value) color space and then randomly shifting the Hue and Saturation components, while keeping the Value component the same. Our experimental results on CIFAR10 dataset show that the accuracy of VGG16 network on adversarial color-shifted images is 5.7%.

Click to Read Paper and Get Code
Deep neural networks are vulnerable against adversarial examples. In this paper, we propose to train and test the networks with randomly subsampled images with high drop rates. We show that this approach significantly improves robustness against adversarial examples in all cases of bounded L0, L2 and L_inf perturbations, while reducing the standard accuracy by a small value. We argue that subsampling pixels can be thought to provide a set of robust features for the input image and, thus, improves robustness without performing adversarial training.

Click to Read Paper and Get Code
Despite the rapid progress of the techniques for image classification, video annotation has remained a challenging task. Automated video annotation would be a breakthrough technology, enabling users to search within the videos. Recently, Google introduced the Cloud Video Intelligence API for video analysis. As per the website, the system can be used to "separate signal from noise, by retrieving relevant information at the video, shot or per frame" level. A demonstration website has been also launched, which allows anyone to select a video for annotation. The API then detects the video labels (objects within the video) as well as shot labels (description of the video events over time). In this paper, we examine the usability of the Google's Cloud Video Intelligence API in adversarial environments. In particular, we investigate whether an adversary can subtly manipulate a video in such a way that the API will return only the adversary-desired labels. For this, we select an image, which is different from the video content, and insert it, periodically and at a very low rate, into the video. We found that if we insert one image every two seconds, the API is deceived into annotating the video as if it only contained the inserted image. Note that the modification to the video is hardly noticeable as, for instance, for a typical frame rate of 25, we insert only one image per 50 video frames. We also found that, by inserting one image per second, all the shot labels returned by the API are related to the inserted image. We perform the experiments on the sample videos provided by the API demonstration website and show that our attack is successful with different videos and images.

Click to Read Paper and Get Code
It is known that humans display "shape bias" when classifying new items, i.e., they prefer to categorize objects based on their shape rather than color. Convolutional Neural Networks (CNNs) are also designed to take into account the spatial structure of image data. In fact, experiments on image datasets, consisting of triples of a probe image, a shape-match and a color-match, have shown that one-shot learning models display shape bias as well. In this paper, we examine the shape bias property of CNNs. In order to conduct large scale experiments, we propose using the model accuracy on images with reversed brightness as a metric to evaluate the shape bias property. Such images, called negative images, contain objects that have the same shape as original images, but with different colors. Through extensive systematic experiments, we investigate the role of different factors, such as training data, model architecture, initialization and regularization techniques, on the shape bias property of CNNs. We show that it is possible to design different CNNs that achieve similar accuracy on original images, but perform significantly different on negative images, suggesting that CNNs do not intrinsically display shape bias. We then show that CNNs are able to learn and generalize the structures, when the model is properly initialized or data is properly augmented, and if batch normalization is used.

Click to Read Paper and Get Code
Due to the growth of video data on Internet, automatic video analysis has gained a lot of attention from academia as well as companies such as Facebook, Twitter and Google. In this paper, we examine the robustness of video analysis algorithms in adversarial settings. Specifically, we propose targeted attacks on two fundamental classes of video analysis algorithms, namely video classification and shot detection. We show that an adversary can subtly manipulate a video in such a way that a human observer would perceive the content of the original video, but the video analysis algorithm will return the adversary's desired outputs. We then apply the attacks on the recently released Google Cloud Video Intelligence API. The API takes a video file and returns the video labels (objects within the video), shot changes (scene changes within the video) and shot labels (description of video events over time). Through experiments, we show that the API generates video and shot labels by processing only the first frame of every second of the video. Hence, an adversary can deceive the API to output only her desired video and shot labels by periodically inserting an image into the video at the rate of one frame per second. We also show that the pattern of shot changes returned by the API can be mostly recovered by an algorithm that compares the histograms of consecutive frames. Based on our equivalent model, we develop a method for slightly modifying the video frames, in order to deceive the API into generating our desired pattern of shot changes. We perform extensive experiments with different videos and show that our attacks are consistently successful across videos with different characteristics. At the end, we propose introducing randomness to video analysis algorithms as a countermeasure to our attacks.

Click to Read Paper and Get Code
Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance on a variety of computer vision tasks, particularly visual classification problems, where new algorithms reported to achieve or even surpass the human performance. In this paper, we examine whether CNNs are capable of learning the semantics of training data. To this end, we evaluate CNNs on negative images, since they share the same structure and semantics as regular images and humans can classify them correctly. Our experimental results indicate that when training on regular images and testing on negative images, the model accuracy is significantly lower than when it is tested on regular images. This leads us to the conjecture that current training methods do not effectively train models to generalize the concepts. We then introduce the notion of semantic adversarial examples - transformed inputs that semantically represent the same objects, but the model does not classify them correctly - and present negative images as one class of such inputs.

Click to Read Paper and Get Code
Social media platforms provide an environment where people can freely engage in discussions. Unfortunately, they also enable several problems, such as online harassment. Recently, Google and Jigsaw started a project called Perspective, which uses machine learning to automatically detect toxic language. A demonstration website has been also launched, which allows anyone to type a phrase in the interface and instantaneously see the toxicity score [1]. In this paper, we propose an attack on the Perspective toxic detection system based on the adversarial examples. We show that an adversary can subtly modify a highly toxic phrase in a way that the system assigns significantly lower toxicity score to it. We apply the attack on the sample phrases provided in the Perspective website and show that we can consistently reduce the toxicity scores to the level of the non-toxic phrases. The existence of such adversarial examples is very harmful for toxic detection systems and seriously undermines their usability.

* 4 pages
Click to Read Paper and Get Code
We consider the setting where a collection of time series, modeled as random processes, evolve in a causal manner, and one is interested in learning the graph governing the relationships of these processes. A special case of wide interest and applicability is the setting where the noise is Gaussian and relationships are Markov and linear. We study this setting with two additional features: firstly, each random process has a hidden (latent) state, which we use to model the internal memory possessed by the variables (similar to hidden Markov models). Secondly, each variable can depend on its latent memory state through a random lag (rather than a fixed lag), thus modeling memory recall with differing lags at distinct times. Under this setting, we develop an estimator and prove that under a genericity assumption, the parameters of the model can be learned consistently. We also propose a practical adaption of this estimator, which demonstrates significant performance gains in both synthetic and real-world datasets.

Click to Read Paper and Get Code
This paper presents a novel approach for automatic recognition of group activities for video surveillance applications. We propose to use a group representative to handle the recognition with a varying number of group members, and use an Asynchronous Hidden Markov Model (AHMM) to model the relationship between people. Furthermore, we propose a group activity detection algorithm which can handle both symmetric and asymmetric group activities, and demonstrate that this approach enables the detection of hierarchical interactions between people. Experimental results show the effectiveness of our approach.

* IEEE Trans. Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 1057-1067, 2010
* This manuscript is the accepted version for TCSVT (IEEE Transactions on Circuits and Systems for Video Technology)
Click to Read Paper and Get Code
This paper presents a novel approach for automatic recognition of human activities for video surveillance applications. We propose to represent an activity by a combination of category components, and demonstrate that this approach offers flexibility to add new activities to the system and an ability to deal with the problem of building models for activities lacking training data. For improving the recognition accuracy, a Confident-Frame- based Recognition algorithm is also proposed, where the video frames with high confidence for recognizing an activity are used as a specialized local model to help classify the remainder of the video frames. Experimental results show the effectiveness of the proposed approach.

* IEEE Trans. Circuits and Systems for Video Technology, vol. 18, pp. 1128-1139, 2008
* This manuscript is the accepted version for TCSVT (IEEE Transactions on Circuits and Systems for Video Technology)
Click to Read Paper and Get Code
Advances in Machine Learning (ML) have led to its adoption as an integral component in many applications, including banking, medical diagnosis, and driverless cars. To further broaden the use of ML models, cloud-based services offered by Microsoft, Amazon, Google, and others have developed ML-as-a-service tools as black-box systems. However, ML classifiers are vulnerable to adversarial examples: inputs that are maliciously modified can cause the classifier to provide adversary-desired outputs. Moreover, it is known that adversarial examples generated on one classifier are likely to cause another classifier to make the same mistake, even if the classifiers have different architectures or are trained on disjoint datasets. This property, which is known as transferability, opens up the possibility of attacking black-box systems by generating adversarial examples on a substitute classifier and transferring the examples to the target classifier. Therefore, the key to protect black-box learning systems against the adversarial examples is to block their transferability. To this end, we propose a training method that, as the input is more perturbed, the classifier smoothly outputs lower confidence on the original label and instead predicts that the input is "invalid". In essence, we augment the output class set with a NULL label and train the classifier to reject the adversarial examples by classifying them as NULL. In experiments, we apply a wide range of attacks based on adversarial examples on the black-box systems. We show that a classifier trained with the proposed method effectively resists against the adversarial examples, while maintaining the accuracy on clean data.

Click to Read Paper and Get Code