Research papers and code for "Rashmi Makhijani":
Automatic speech recognition enables a wide range of current and emerging applications such as automatic transcription, multimedia content analysis, and natural human-computer interfaces. This paper provides a glimpse of the opportunities and challenges that parallelism provides for automatic speech recognition and related application research from the point of view of speech researchers. The increasing parallelism in computing platforms opens three major possibilities for speech recognition systems: improving recognition accuracy in non-ideal, everyday noisy environments; increasing recognition throughput in batch processing of speech data; and reducing recognition latency in realtime usage scenarios. This paper describes technical challenges, approaches taken, and possible directions for future research to guide the design of efficient parallel software and hardware infrastructures.

* Pages: 05 Figures : 01 Proceedings of the International Conference BEATS 2010, NIT Jalandhar, INDIA
Click to Read Paper and Get Code
Acoustical mismatch among training and testing phases degrades outstandingly speech recognition results. This problem has limited the development of real-world nonspecific applications, as testing conditions are highly variant or even unpredictable during the training process. Therefore the background noise has to be removed from the noisy speech signal to increase the signal intelligibility and to reduce the listener fatigue. Enhancement techniques applied, as pre-processing stages; to the systems remarkably improve recognition results. In this paper, a novel approach is used to enhance the perceived quality of the speech signal when the additive noise cannot be directly controlled. Instead of controlling the background noise, we propose to reinforce the speech signal so that it can be heard more clearly in noisy environments. The subjective evaluation shows that the proposed method improves perceptual quality of speech in various noisy environments. As in some cases speaking may be more convenient than typing, even for rapid typists: many mathematical symbols are missing from the keyboard but can be easily spoken and recognized. Therefore, the proposed system can be used in an application designed for mathematical symbol recognition (especially symbols not available on the keyboard) in schools.

* International Journal of Engineering Science and Technology (IJEST), 2011, ISSN : 0975-5462 Vol. 3 No. 2, pp 1764-1769
* Pages: 06 Figures : 05
Click to Read Paper and Get Code