Models, code, and papers for "Rhema Linder":

XFake: Explainable Fake News Detector with Visualizations

Jul 08, 2019
Fan Yang, Shiva K. Pentyala, Sina Mohseni, Mengnan Du, Hao Yuan, Rhema Linder, Eric D. Ragan, Shuiwang Ji, Xia Hu

In this demo paper, we present the XFake system, an explainable fake news detector that assists end-users to identify news credibility. To effectively detect and interpret the fakeness of news items, we jointly consider both attributes (e.g., speaker) and statements. Specifically, MIMIC, ATTN and PERT frameworks are designed, where MIMIC is built for attribute analysis, ATTN is for statement semantic analysis and PERT is for statement linguistic analysis. Beyond the explanations extracted from the designed frameworks, relevant supporting examples as well as visualization are further provided to facilitate the interpretation. Our implemented system is demonstrated on a real-world dataset crawled from PolitiFact, where thousands of verified political news have been collected.

* 4 pages, WebConf'2019 Demo 

  Click for Model/Code and Paper