Models, code, and papers for "Ricky T. Q. Chen":

Latent ODEs for Irregularly-Sampled Time Series

Jul 08, 2019
Yulia Rubanova, Ricky T. Q. Chen, David Duvenaud

Time series with non-uniform intervals occur in many applications, and are difficult to model using standard recurrent neural networks (RNNs). We generalize RNNs to have continuous-time hidden dynamics defined by ordinary differential equations (ODEs), a model we call ODE-RNNs. Furthermore, we use ODE-RNNs to replace the recognition network of the recently-proposed Latent ODE model. Both ODE-RNNs and Latent ODEs can naturally handle arbitrary time gaps between observations, and can explicitly model the probability of observation times using Poisson processes. We show experimentally that these ODE-based models outperform their RNN-based counterparts on irregularly-sampled data.


  Click for Model/Code and Paper
Isolating Sources of Disentanglement in Variational Autoencoders

Oct 22, 2018
Ricky T. Q. Chen, Xuechen Li, Roger Grosse, David Duvenaud

We decompose the evidence lower bound to show the existence of a term measuring the total correlation between latent variables. We use this to motivate our $\beta$-TCVAE (Total Correlation Variational Autoencoder), a refinement of the state-of-the-art $\beta$-VAE objective for learning disentangled representations, requiring no additional hyperparameters during training. We further propose a principled classifier-free measure of disentanglement called the mutual information gap (MIG). We perform extensive quantitative and qualitative experiments, in both restricted and non-restricted settings, and show a strong relation between total correlation and disentanglement, when the latent variables model is trained using our framework.

* Added more experiments and improved clarity 

  Click for Model/Code and Paper
Neural Ordinary Differential Equations

Oct 22, 2018
Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.


  Click for Model/Code and Paper
Residual Flows for Invertible Generative Modeling

Jun 07, 2019
Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen

Flow-based generative models parameterize probability distributions through an invertible transformation and can be trained by maximum likelihood. Invertible residual networks provide a flexible family of transformations where only Lipschitz conditions rather than strict architectural constraints are needed for enforcing invertibility. However, prior work trained invertible residual networks for density estimation by relying on biased log-density estimates whose bias increased with the network's expressiveness. We give a tractable unbiased estimate of the log density, and reduce the memory required during training by a factor of ten. Furthermore, we improve invertible residual blocks by proposing the use of activation functions that avoid gradient saturation and generalizing the Lipschitz condition to induced mixed norms. The resulting approach, called Residual Flows, achieves state-of-the-art performance on density estimation amongst flow-based models, and outperforms networks that use coupling blocks at joint generative and discriminative modeling.

* fix typo in abstract 

  Click for Model/Code and Paper
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

Oct 22, 2018
Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, David Duvenaud

A promising class of generative models maps points from a simple distribution to a complex distribution through an invertible neural network. Likelihood-based training of these models requires restricting their architectures to allow cheap computation of Jacobian determinants. Alternatively, the Jacobian trace can be used if the transformation is specified by an ordinary differential equation. In this paper, we use Hutchinson's trace estimator to give a scalable unbiased estimate of the log-density. The result is a continuous-time invertible generative model with unbiased density estimation and one-pass sampling, while allowing unrestricted neural network architectures. We demonstrate our approach on high-dimensional density estimation, image generation, and variational inference, achieving the state-of-the-art among exact likelihood methods with efficient sampling.

* 8 Pages, 6 figures 

  Click for Model/Code and Paper