Models, code, and papers for "Ruigang Yang":

Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

Aug 01, 2018
Xinjing Cheng, Peng Wang, Ruigang Yang

Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) To refine the depth output from state-of-the-art (SOTA) existing methods; and (2) to convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LIDARs that provides sparse but accurate depth measurements. We experimented the proposed CSPN over two popular benchmarks for depth estimation, i.e. NYU v2 and KITTI, where we show that our proposed approach improves in not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5 times faster) than prior SOTA methods.

* 14 pages, 8 figures, ECCV 2018 

  Click for Model/Code and Paper
CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagation Networks for Depth Completion

Nov 22, 2019
Xinjing Cheng, Peng Wang, Chenye Guan, Ruigang Yang

Depth Completion deals with the problem of converting a sparse depth map to a dense one, given the corresponding color image. Convolutional spatial propagation network (CSPN) is one of the state-of-the-art (SoTA) methods of depth completion, which recovers structural details of the scene. In this paper, we propose CSPN++, which further improves its effectiveness and efficiency by learning adaptive convolutional kernel sizes and the number of iterations for the propagation, thus the context and computational resources needed at each pixel could be dynamically assigned upon requests. Specifically, we formulate the learning of the two hyper-parameters as an architecture selection problem where various configurations of kernel sizes and numbers of iterations are first defined, and then a set of soft weighting parameters are trained to either properly assemble or select from the pre-defined configurations at each pixel. In our experiments, we find weighted assembling can lead to significant accuracy improvements, which we referred to as "context-aware CSPN", while weighted selection, "resource-aware CSPN" can reduce the computational resource significantly with similar or better accuracy. Besides, the resource needed for CSPN++ can be adjusted w.r.t. the computational budget automatically. Finally, to avoid the side effects of noise or inaccurate sparse depths, we embed a gated network inside CSPN++, which further improves the performance. We demonstrate the effectiveness of CSPN++on the KITTI depth completion benchmark, where it significantly improves over CSPN and other SoTA methods.

* Camera Ready Version. Accepted by AAAI 2020 

  Click for Model/Code and Paper
A Network Structure to Explicitly Reduce Confusion Errors in Semantic Segmentation

Aug 01, 2018
Qichuan Geng, Xinyu Huang, Zhong Zhou, Ruigang Yang

Confusing classes that are ubiquitous in real world often degrade performance for many vision related applications like object detection, classification, and segmentation. The confusion errors are not only caused by similar visual patterns but also amplified by various factors during the training of our designed models, such as reduced feature resolution in the encoding process or imbalanced data distributions. A large amount of deep learning based network structures has been proposed in recent years to deal with these individual factors and improve network performance. However, to our knowledge, no existing work in semantic image segmentation is designed to tackle confusion errors explicitly. In this paper, we present a novel and general network structure that reduces confusion errors in more direct manner and apply the network for semantic segmentation. There are two major contributions in our network structure: 1) We ensemble subnets with heterogeneous output spaces based on the discriminative confusing groups. The training for each subnet can distinguish confusing classes within the group without affecting unrelated classes outside the group. 2) We propose an improved cross-entropy loss function that maximizes the probability assigned to the correct class and penalizes the probabilities assigned to the confusing classes at the same time. Our network structure is a general structure and can be easily adapted to any other networks to further reduce confusion errors. Without any changes in the feature encoder and post-processing steps, our experiments demonstrate consistent and significant improvements on different baseline models on Cityscapes and PASCAL VOC datasets (e.g., 3.05% over ResNet-101 and 1.30% over ResNet-38).

* 18 pages, 9 figures 

  Click for Model/Code and Paper
Detailed Surface Geometry and Albedo Recovery from RGB-D Video Under Natural Illumination

Mar 22, 2017
Xinxin Zuo, Sen Wang, Jiangbin Zheng, Ruigang Yang

In this paper we present a novel approach for depth map enhancement from an RGB-D video sequence. The basic idea is to exploit the shading information in the color image. Instead of making assumption about surface albedo or controlled object motion and lighting, we use the lighting variations introduced by casual object movement. We are effectively calculating photometric stereo from a moving object under natural illuminations. The key technical challenge is to establish correspondences over the entire image set. We therefore develop a lighting insensitive robust pixel matching technique that out-performs optical flow method in presence of lighting variations. In addition we present an expectation-maximization framework to recover the surface normal and albedo simultaneously, without any regularization term. We have validated our method on both synthetic and real datasets to show its superior performance on both surface details recovery and intrinsic decomposition.

  Click for Model/Code and Paper
Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays

Oct 27, 2016
Yajie Zhao, Qingguo Xu, Xinyu Huang, Ruigang Yang

A head-mounted display (HMD) could be an important component of augmented reality system. However, as the upper face region is seriously occluded by the device, the user experience could be affected in applications such as telecommunication and multi-player video games. In this paper, we first present a novel experimental setup that consists of two near-infrared (NIR) cameras to point to the eye regions and one visible-light RGB camera to capture the visible face region. The main purpose of this paper is to synthesize realistic face images without occlusions based on the images captured by these cameras. To this end, we propose a novel synthesis framework that contains four modules: 3D head reconstruction, face alignment and tracking, face synthesis, and eye synthesis. In face synthesis, we propose a novel algorithm that can robustly align and track a personalized 3D head model given a face that is severely occluded by the HMD. In eye synthesis, in order to generate accurate eye movements and dynamic wrinkle variations around eye regions, we propose another novel algorithm to colorize the NIR eye images and further remove the "red eye" effects caused by the colorization. Results show that both hardware setup and system framework are robust to synthesize realistic face images in video sequences.

* 12 pages,15 figures 

  Click for Model/Code and Paper
View Extrapolation of Human Body from a Single Image

Apr 11, 2018
Hao Zhu, Hao Su, Peng Wang, Xun Cao, Ruigang Yang

We study how to synthesize novel views of human body from a single image. Though recent deep learning based methods work well for rigid objects, they often fail on objects with large articulation, like human bodies. The core step of existing methods is to fit a map from the observable views to novel views by CNNs; however, the rich articulation modes of human body make it rather challenging for CNNs to memorize and interpolate the data well. To address the problem, we propose a novel deep learning based pipeline that explicitly estimates and leverages the geometry of the underlying human body. Our new pipeline is a composition of a shape estimation network and an image generation network, and at the interface a perspective transformation is applied to generate a forward flow for pixel value transportation. Our design is able to factor out the space of data variation and makes learning at each step much easier. Empirically, we show that the performance for pose-varying objects can be improved dramatically. Our method can also be applied on real data captured by 3D sensors, and the flow generated by our methods can be used for generating high quality results in higher resolution.

* Accepted to CVPR 2018 

  Click for Model/Code and Paper
Improved Techniques for Training Adaptive Deep Networks

Aug 17, 2019
Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, Gao Huang

Adaptive inference is a promising technique to improve the computational efficiency of deep models at test time. In contrast to static models which use the same computation graph for all instances, adaptive networks can dynamically adjust their structure conditioned on each input. While existing research on adaptive inference mainly focuses on designing more advanced architectures, this paper investigates how to train such networks more effectively. Specifically, we consider a typical adaptive deep network with multiple intermediate classifiers. We present three techniques to improve its training efficacy from two aspects: 1) a Gradient Equilibrium algorithm to resolve the conflict of learning of different classifiers; 2) an Inline Subnetwork Collaboration approach and a One-for-all Knowledge Distillation algorithm to enhance the collaboration among classifiers. On multiple datasets (CIFAR-10, CIFAR-100 and ImageNet), we show that the proposed approach consistently leads to further improved efficiency on top of state-of-the-art adaptive deep networks.

  Click for Model/Code and Paper
Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation

May 08, 2019
Hao Zhu, Xinxin Zuo, Sen Wang, Xun Cao, Ruigang Yang

This paper presents a novel framework to recover detailed human body shapes from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric based template that lacks the surface details. As such the resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. We are able to restore detailed human body shapes beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance. The code is available in

* CVPR 2019 Oral 

  Click for Model/Code and Paper
GA-Net: Guided Aggregation Net for End-to-end Stereo Matching

Apr 13, 2019
Feihu Zhang, Victor Prisacariu, Ruigang Yang, Philip H. S. Torr

In the stereo matching task, matching cost aggregation is crucial in both traditional methods and deep neural network models in order to accurately estimate disparities. We propose two novel neural net layers, aimed at capturing local and the whole-image cost dependencies respectively. The first is a semi-global aggregation layer which is a differentiable approximation of the semi-global matching, the second is the local guided aggregation layer which follows a traditional cost filtering strategy to refine thin structures. These two layers can be used to replace the widely used 3D convolutional layer which is computationally costly and memory-consuming as it has cubic computational/memory complexity. In the experiments, we show that nets with a two-layer guided aggregation block easily outperform the state-of-the-art GC-Net which has nineteen 3D convolutional layers. We also train a deep guided aggregation network (GA-Net) which gets better accuracies than state-of-the-art methods on both Scene Flow dataset and KITTI benchmarks.

* CVPR 2019 (Oral Presentation) 

  Click for Model/Code and Paper
Safe Navigation with Human Instructions in Complex Scenes

Sep 12, 2018
Zhe Hu, Jia Pan, Tingxiang Fan, Ruigang Yang, Dinesh Manocha

In this paper, we present a robotic navigation algorithm with natural language interfaces, which enables a robot to safely walk through a changing environment with moving persons by following human instructions such as "go to the restaurant and keep away from people". We first classify human instructions into three types: the goal, the constraints, and uninformative phrases. Next, we provide grounding for the extracted goal and constraint items in a dynamic manner along with the navigation process, to deal with the target objects that are too far away for sensor observation and the appearance of moving obstacles like humans. In particular, for a goal phrase (e.g., "go to the restaurant"), we ground it to a location in a predefined semantic map and treat it as a goal for a global motion planner, which plans a collision-free path in the workspace for the robot to follow. For a constraint phrase (e.g., "keep away from people"), we dynamically add the corresponding constraint into a local planner by adjusting the values of a local costmap according to the results returned by the object detection module. The updated costmap is then used to compute a local collision avoidance control for the safe navigation of the robot. By combining natural language processing, motion planning, and computer vision, our developed system is demonstrated to be able to successfully follow natural language navigation instructions to achieve navigation tasks in both simulated and real-world scenarios. Videos are available at

  Click for Model/Code and Paper
CrowdMove: Autonomous Mapless Navigation in Crowded Scenarios

Jul 25, 2018
Tingxiang Fan, Xinjing Cheng, Jia Pan, Dinesh Manocha, Ruigang Yang

Navigation is an essential capability for mobile robots. In this paper, we propose a generalized yet effective 3M (i.e., multi-robot, multi-scenario, and multi-stage) training framework. We optimize a mapless navigation policy with a robust policy gradient algorithm. Our method enables different types of mobile platforms to navigate safely in complex and highly dynamic environments, such as pedestrian crowds. To demonstrate the superiority of our method, we test our methods with four kinds of mobile platforms in four scenarios. Videos are available at

* arXiv admin note: text overlap with arXiv:1709.10082 

  Click for Model/Code and Paper
DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map

May 13, 2018
Peng Wang, Ruigang Yang, Binbin Cao, Wei Xu, Yuanqing Lin

For applications such as autonomous driving, self-localization/camera pose estimation and scene parsing are crucial technologies. In this paper, we propose a unified framework to tackle these two problems simultaneously. The uniqueness of our design is a sensor fusion scheme which integrates camera videos, motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robustness and efficiency of the system. Specifically, we first have an initial coarse camera pose obtained from consumer-grade GPS/IMU, based on which a label map can be rendered from the 3D semantic map. Then, the rendered label map and the RGB image are jointly fed into a pose CNN, yielding a corrected camera pose. In addition, to incorporate temporal information, a multi-layer recurrent neural network (RNN) is further deployed improve the pose accuracy. Finally, based on the pose from RNN, we render a new label map, which is fed together with the RGB image into a segment CNN which produces per-pixel semantic label. In order to validate our approach, we build a dataset with registered 3D point clouds and video camera images. Both the point clouds and the images are semantically-labeled. Each video frame has ground truth pose from highly accurate motion sensors. We show that practically, pose estimation solely relying on images like PoseNet may fail due to street view confusion, and it is important to fuse multiple sensors. Finally, various ablation studies are performed, which demonstrate the effectiveness of the proposed system. In particular, we show that scene parsing and pose estimation are mutually beneficial to achieve a more robust and accurate system.

* Accepted in CVPR 2018. arXiv admin note: substantial text overlap with arXiv:1803.06184 

  Click for Model/Code and Paper
RealPoint3D: Point Cloud Generation from a Single Image with Complex Background

Sep 08, 2018
Yan Xia, Yang Zhang, Dingfu Zhou, Xinyu Huang, Cheng Wang, Ruigang Yang

3D point cloud generation by the deep neural network from a single image has been attracting more and more researchers' attention. However, recently-proposed methods require the objects be captured with relatively clean backgrounds, fixed viewpoint, while this highly limits its application in the real environment. To overcome these drawbacks, we proposed to integrate the prior 3D shape knowledge into the network to guide the 3D generation. By taking additional 3D information, the proposed network can handle the 3D object generation from a single real image captured from any viewpoint and complex background. Specifically, giving a query image, we retrieve the nearest shape model from a pre-prepared 3D model database. Then, the image together with the retrieved shape model is fed into the proposed network to generate the fine-grained 3D point cloud. The effectiveness of our proposed framework has been verified on different kinds of datasets. Experimental results show that the proposed framework achieves state-of-the-art accuracy compared to other volumetric-based and point set generation methods. Furthermore, the proposed framework works well for real images in complex backgrounds with various view angles.

* 8 pages, 6 figures 

  Click for Model/Code and Paper
Gated Path Selection Network for Semantic Segmentation

Jan 19, 2020
Qichuan Geng, Hong Zhang, Xiaojuan Qi, Ruigang Yang, Zhong Zhou, Gao Huang

Semantic segmentation is a challenging task that needs to handle large scale variations, deformations and different viewpoints. In this paper, we develop a novel network named Gated Path Selection Network (GPSNet), which aims to learn adaptive receptive fields. In GPSNet, we first design a two-dimensional multi-scale network - SuperNet, which densely incorporates features from growing receptive fields. To dynamically select desirable semantic context, a gate prediction module is further introduced. In contrast to previous works that focus on optimizing sample positions on the regular grids, GPSNet can adaptively capture free form dense semantic contexts. The derived adaptive receptive fields are data-dependent, and are flexible that can model different object geometric transformations. On two representative semantic segmentation datasets, i.e., Cityscapes, and ADE20K, we show that the proposed approach consistently outperforms previous methods and achieves competitive performance without bells and whistles.

  Click for Model/Code and Paper
Domain-invariant Stereo Matching Networks

Nov 29, 2019
Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu, Benjamin Wah, Philip Torr

State-of-the-art stereo matching networks have difficulties in generalizing to new unseen environments due to significant domain differences, such as color, illumination, contrast, and texture. In this paper, we aim at designing a domain-invariant stereo matching network (DSMNet) that generalizes well to unseen scenes. To achieve this goal, we propose i) a novel "domain normalization" approach that regularizes the distribution of learned representations to allow them to be invariant to domain differences, and ii) a trainable non-local graph-based filter for extracting robust structural and geometric representations that can further enhance domain-invariant generalizations. When trained on synthetic data and generalized to real test sets, our model performs significantly better than all state-of-the-art models. It even outperforms some deep learning models (e.g. MC-CNN) fine-tuned with test-domain data.

  Click for Model/Code and Paper
Learning Resilient Behaviors for Navigation Under Uncertainty Environments

Oct 22, 2019
Tingxiang Fan, Pinxin Long, Wenxi Liu, Jia Pan, Ruigang Yang, Dinesh Manocha

Deep reinforcement learning has great potential to acquire complex, adaptive behaviors for autonomous agents automatically. However, the underlying neural network polices have not been widely deployed in real-world applications, especially in these safety-critical tasks (e.g., autonomous driving). One of the reasons is that the learned policy cannot perform flexible and resilient behaviors as traditional methods to adapt to diverse environments. In this paper, we consider the problem that a mobile robot learns adaptive and resilient behaviors for navigating in unseen uncertain environments while avoiding collisions. We present a novel approach for uncertainty-aware navigation by introducing an uncertainty-aware predictor to model the environmental uncertainty, and we propose a novel uncertainty-aware navigation network to learn resilient behaviors in the prior unknown environments. To train the proposed uncertainty-aware network more stably and efficiently, we present the temperature decay training paradigm, which balances exploration and exploitation during the training process. Our experimental evaluation demonstrates that our approach can learn resilient behaviors in diverse environments and generate adaptive trajectories according to environmental uncertainties.

* submitted to ICRA 2020 

  Click for Model/Code and Paper
TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

Apr 09, 2019
Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, Dinesh Manocha

To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.

* Accepted by AAAI(Oral) 2019 

  Click for Model/Code and Paper