Research papers and code for "Ruizhe Wang":
Image translation between two domains is a class of problems aiming to learn mapping from an input image in the source domain to an output image in the target domain. It has been applied to numerous domains, such as data augmentation, domain adaptation, and unsupervised training. When paired training data is not accessible, image translation becomes an ill-posed problem. We constrain the problem with the assumption that the translated image needs to be perceptually similar to the original image and also appears to be drawn from the new domain, and propose a simple yet effective image translation model consisting of a single generator trained with a self-regularization term and an adversarial term. We further notice that existing image translation techniques are agnostic to the subjects of interest and often introduce unwanted changes or artifacts to the input. Thus we propose to add an attention module to predict an attention map to guide the image translation process. The module learns to attend to key parts of the image while keeping everything else unaltered, essentially avoiding undesired artifacts or changes. The predicted attention map also opens door to applications such as unsupervised segmentation and saliency detection. Extensive experiments and evaluations show that our model while being simpler, achieves significantly better performance than existing image translation methods.

Click to Read Paper and Get Code
The concept of beauty has been debated by philosophers and psychologists for centuries, but most definitions are subjective and metaphysical, and deficit in accuracy, generality, and scalability. In this paper, we present a novel study on mining beauty semantics of facial attributes based on big data, with an attempt to objectively construct descriptions of beauty in a quantitative manner. We first deploy a deep convolutional neural network (CNN) to extract facial attributes, and then investigate correlations between these features and attractiveness on two large-scale datasets labelled with beauty scores. Not only do we discover the secrets of beauty verified by statistical significance tests, our findings also align perfectly with existing psychological studies that, e.g., small nose, high cheekbones, and femininity contribute to attractiveness. We further leverage these high-level representations to original images by a generative adversarial network (GAN). Beauty enhancements after synthesis are visually compelling and statistically convincing verified by a user survey of 10,000 data points.

Click to Read Paper and Get Code
We present an end-to-end system for reconstructing complete watertight and textured models of moving subjects such as clothed humans and animals, using only three or four handheld sensors. The heart of our framework is a new pairwise registration algorithm that minimizes, using a particle swarm strategy, an alignment error metric based on mutual visibility and occlusion. We show that this algorithm reliably registers partial scans with as little as 15% overlap without requiring any initial correspondences, and outperforms alternative global registration algorithms. This registration algorithm allows us to reconstruct moving subjects from free-viewpoint video produced by consumer-grade sensors, without extensive sensor calibration, constrained capture volume, expensive arrays of cameras, or templates of the subject geometry.

* 22 pages, 12 figures
Click to Read Paper and Get Code
Bayesian Neural Networks (BNNs) have been proposed to address the problem of model uncertainty in training and inference. By introducing weights associated with conditioned probability distributions, BNNs are capable of resolving the overfitting issue commonly seen in conventional neural networks and allow for small-data training, through the variational inference process. Frequent usage of Gaussian random variables in this process requires a properly optimized Gaussian Random Number Generator (GRNG). The high hardware cost of conventional GRNG makes the hardware implementation of BNNs challenging. In this paper, we propose VIBNN, an FPGA-based hardware accelerator design for variational inference on BNNs. We explore the design space for massive amount of Gaussian variable sampling tasks in BNNs. Specifically, we introduce two high performance Gaussian (pseudo) random number generators: the RAM-based Linear Feedback Gaussian Random Number Generator (RLF-GRNG), which is inspired by the properties of binomial distribution and linear feedback logics; and the Bayesian Neural Network-oriented Wallace Gaussian Random Number Generator. To achieve high scalability and efficient memory access, we propose a deep pipelined accelerator architecture with fast execution and good hardware utilization. Experimental results demonstrate that the proposed VIBNN implementations on an FPGA can achieve throughput of 321,543.4 Images/s and energy efficiency upto 52,694.8 Images/J while maintaining similar accuracy as its software counterpart.

Click to Read Paper and Get Code
Deep neural networks have proven to be particularly effective in visual and audio recognition tasks. Existing models tend to be computationally expensive and memory intensive, however, and so methods for hardware-oriented approximation have become a hot topic. Research has shown that custom hardware-based neural network accelerators can surpass their general-purpose processor equivalents in terms of both throughput and energy efficiency. Application-tailored accelerators, when co-designed with approximation-based network training methods, transform large, dense and computationally expensive networks into small, sparse and hardware-efficient alternatives, increasing the feasibility of network deployment. In this article, we provide a comprehensive evaluation of approximation methods for high-performance network inference along with in-depth discussion of their effectiveness for custom hardware implementation. We also include proposals for future research based on a thorough analysis of current trends. This article represents the first survey providing detailed comparisons of custom hardware accelerators featuring approximation for both convolutional and recurrent neural networks, through which we hope to inspire exciting new developments in the field.

Click to Read Paper and Get Code