Research papers and code for "Ruslan Salakhutdinov":
Matrix factorization (MF) has become a common approach to collaborative filtering, due to ease of implementation and scalability to large data sets. Two existing drawbacks of the basic model is that it does not incorporate side information on either users or items, and assumes a common variance for all users. We extend the work of constrained probabilistic matrix factorization by deriving the Gibbs updates for the side feature vectors for items (Salakhutdinov and Minh, 2008). We show that this Bayesian treatment to the constrained PMF model outperforms simple MAP estimation. We also consider extensions to heteroskedastic precision introduced in the literature (Lakshminarayanan, Bouchard, and Archambeau, 2011). We show that this tends result in overfitting for deterministic approximation algorithms (ex: Variational inference) when the observed entries in the user / item matrix are distributed in an non-uniform manner. In light of this, we propose a truncated precision model. Our experimental results suggest that this model tends to delay overfitting.

Click to Read Paper and Get Code
A critical component to enabling intelligent reasoning in partially observable environments is memory. Despite this importance, Deep Reinforcement Learning (DRL) agents have so far used relatively simple memory architectures, with the main methods to overcome partial observability being either a temporal convolution over the past k frames or an LSTM layer. More recent work (Oh et al., 2016) has went beyond these architectures by using memory networks which can allow more sophisticated addressing schemes over the past k frames. But even these architectures are unsatisfactory due to the reason that they are limited to only remembering information from the last k frames. In this paper, we develop a memory system with an adaptable write operator that is customized to the sorts of 3D environments that DRL agents typically interact with. This architecture, called the Neural Map, uses a spatially structured 2D memory image to learn to store arbitrary information about the environment over long time lags. We demonstrate empirically that the Neural Map surpasses previous DRL memories on a set of challenging 2D and 3D maze environments and show that it is capable of generalizing to environments that were not seen during training.

Click to Read Paper and Get Code
We show that matrix completion with trace-norm regularization can be significantly hurt when entries of the matrix are sampled non-uniformly. We introduce a weighted version of the trace-norm regularizer that works well also with non-uniform sampling. Our experimental results demonstrate that the weighted trace-norm regularization indeed yields significant gains on the (highly non-uniformly sampled) Netflix dataset.

* 9 pages
Click to Read Paper and Get Code
The learnability of different neural architectures can be characterized directly by computable measures of data complexity. In this paper, we reframe the problem of architecture selection as understanding how data determines the most expressive and generalizable architectures suited to that data, beyond inductive bias. After suggesting algebraic topology as a measure for data complexity, we show that the power of a network to express the topological complexity of a dataset in its decision region is a strictly limiting factor in its ability to generalize. We then provide the first empirical characterization of the topological capacity of neural networks. Our empirical analysis shows that at every level of dataset complexity, neural networks exhibit topological phase transitions. This observation allowed us to connect existing theory to empirically driven conjectures on the choice of architectures for fully-connected neural networks.

* 13 pages, 11 figures
Click to Read Paper and Get Code
Word Sense Disambiguation is an open problem in Natural Language Processing which is particularly challenging and useful in the unsupervised setting where all the words in any given text need to be disambiguated without using any labeled data. Typically WSD systems use the sentence or a small window of words around the target word as the context for disambiguation because their computational complexity scales exponentially with the size of the context. In this paper, we leverage the formalism of topic model to design a WSD system that scales linearly with the number of words in the context. As a result, our system is able to utilize the whole document as the context for a word to be disambiguated. The proposed method is a variant of Latent Dirichlet Allocation in which the topic proportions for a document are replaced by synset proportions. We further utilize the information in the WordNet by assigning a non-uniform prior to synset distribution over words and a logistic-normal prior for document distribution over synsets. We evaluate the proposed method on Senseval-2, Senseval-3, SemEval-2007, SemEval-2013 and SemEval-2015 English All-Word WSD datasets and show that it outperforms the state-of-the-art unsupervised knowledge-based WSD system by a significant margin.

* To appear in AAAI-18
Click to Read Paper and Get Code
The history of learning for control has been an exciting back and forth between two broad classes of algorithms: planning and reinforcement learning. Planning algorithms effectively reason over long horizons, but assume access to a local policy and distance metric over collision-free paths. Reinforcement learning excels at learning policies and the relative values of states, but fails to plan over long horizons. Despite the successes of each method in various domains, tasks that require reasoning over long horizons with limited feedback and high-dimensional observations remain exceedingly challenging for both planning and reinforcement learning algorithms. Frustratingly, these sorts of tasks are potentially the most useful, as they are simple to design (a human only need to provide an example goal state) and avoid reward shaping, which can bias the agent towards finding a sub-optimal solution. We introduce a general control algorithm that combines the strengths of planning and reinforcement learning to effectively solve these tasks. Our aim is to decompose the task of reaching a distant goal state into a sequence of easier tasks, each of which corresponds to reaching a subgoal. Planning algorithms can automatically find these waypoints, but only if provided with suitable abstractions of the environment -- namely, a graph consisting of nodes and edges. Our main insight is that this graph can be constructed via reinforcement learning, where a goal-conditioned value function provides edge weights, and nodes are taken to be previously seen observations in a replay buffer. Using graph search over our replay buffer, we can automatically generate this sequence of subgoals, even in image-based environments. Our algorithm, search on the replay buffer (SoRB), enables agents to solve sparse reward tasks over one hundred steps, and generalizes substantially better than standard RL algorithms.

* Run our algorithm in your browser: http://bit.ly/rl_search
Click to Read Paper and Get Code
Several recently proposed architectures of neural networks such as ResNeXt, Inception, Xception, SqueezeNet and Wide ResNet are based on the designing idea of having multiple branches and have demonstrated improved performance in many applications. We show that one cause for such success is due to the fact that the multi-branch architecture is less non-convex in terms of duality gap. The duality gap measures the degree of intrinsic non-convexity of an optimization problem: smaller gap in relative value implies lower degree of intrinsic non-convexity. The challenge is to quantitatively measure the duality gap of highly non-convex problems such as deep neural networks. In this work, we provide strong guarantees of this quantity for two classes of network architectures. For the neural networks with arbitrary activation functions, multi-branch architecture and a variant of hinge loss, we show that the duality gap of both population and empirical risks shrinks to zero as the number of branches increases. This result sheds light on better understanding the power of over-parametrization where increasing the network width tends to make the loss surface less non-convex. For the neural networks with linear activation function and $\ell_2$ loss, we show that the duality gap of empirical risk is zero. Our two results work for arbitrary depths and adversarial data, while the analytical techniques might be of independent interest to non-convex optimization more broadly. Experiments on both synthetic and real-world datasets validate our results.

* 26 pages, 6 figures, 3 tables; v2 fixes some typos. arXiv admin note: text overlap with arXiv:1712.08559 by other authors
Click to Read Paper and Get Code
In recent years, Deep Reinforcement Learning has made impressive advances in solving several important benchmark problems for sequential decision making. Many control applications use a generic multilayer perceptron (MLP) for non-vision parts of the policy network. In this work, we propose a new neural network architecture for the policy network representation that is simple yet effective. The proposed Structured Control Net (SCN) splits the generic MLP into two separate sub-modules: a nonlinear control module and a linear control module. Intuitively, the nonlinear control is for forward-looking and global control, while the linear control stabilizes the local dynamics around the residual of global control. We hypothesize that this will bring together the benefits of both linear and nonlinear policies: improve training sample efficiency, final episodic reward, and generalization of learned policy, while requiring a smaller network and being generally applicable to different training methods. We validated our hypothesis with competitive results on simulations from OpenAI MuJoCo, Roboschool, Atari, and a custom 2D urban driving environment, with various ablation and generalization tests, trained with multiple black-box and policy gradient training methods. The proposed architecture has the potential to improve upon broader control tasks by incorporating problem specific priors into the architecture. As a case study, we demonstrate much improved performance for locomotion tasks by emulating the biological central pattern generators (CPGs) as the nonlinear part of the architecture.

* First two authors contributed equally
Click to Read Paper and Get Code
Deep Neural Networks (DNNs) often struggle with one-shot learning where we have only one or a few labeled training examples per category. In this paper, we argue that by using side information, we may compensate the missing information across classes. We introduce two statistical approaches for fusing side information into data representation learning to improve one-shot learning. First, we propose to enforce the statistical dependency between data representations and multiple types of side information. Second, we introduce an attention mechanism to efficiently treat examples belonging to the 'lots-of-examples' classes as quasi-samples (additional training samples) for 'one-example' classes. We empirically show that our learning architecture improves over traditional softmax regression networks as well as state-of-the-art attentional regression networks on one-shot recognition tasks.

Click to Read Paper and Get Code
One characteristic that sets humans apart from modern learning-based computer vision algorithms is the ability to acquire knowledge about the world and use that knowledge to reason about the visual world. Humans can learn about the characteristics of objects and the relationships that occur between them to learn a large variety of visual concepts, often with few examples. This paper investigates the use of structured prior knowledge in the form of knowledge graphs and shows that using this knowledge improves performance on image classification. We build on recent work on end-to-end learning on graphs, introducing the Graph Search Neural Network as a way of efficiently incorporating large knowledge graphs into a vision classification pipeline. We show in a number of experiments that our method outperforms standard neural network baselines for multi-label classification.

* CVPR 2017
Click to Read Paper and Get Code
Open domain Question Answering (QA) systems must interact with external knowledge sources, such as web pages, to find relevant information. Information sources like Wikipedia, however, are not well structured and difficult to utilize in comparison with Knowledge Bases (KBs). In this work we present a two-step approach to question answering from unstructured text, consisting of a retrieval step and a comprehension step. For comprehension, we present an RNN based attention model with a novel mixture mechanism for selecting answers from either retrieved articles or a fixed vocabulary. For retrieval we introduce a hand-crafted model and a neural model for ranking relevant articles. We achieve state-of-the-art performance on W IKI M OVIES dataset, reducing the error by 40%. Our experimental results further demonstrate the importance of each of the introduced components.

Click to Read Paper and Get Code
The variational autoencoder (VAE; Kingma, Welling (2014)) is a recently proposed generative model pairing a top-down generative network with a bottom-up recognition network which approximates posterior inference. It typically makes strong assumptions about posterior inference, for instance that the posterior distribution is approximately factorial, and that its parameters can be approximated with nonlinear regression from the observations. As we show empirically, the VAE objective can lead to overly simplified representations which fail to use the network's entire modeling capacity. We present the importance weighted autoencoder (IWAE), a generative model with the same architecture as the VAE, but which uses a strictly tighter log-likelihood lower bound derived from importance weighting. In the IWAE, the recognition network uses multiple samples to approximate the posterior, giving it increased flexibility to model complex posteriors which do not fit the VAE modeling assumptions. We show empirically that IWAEs learn richer latent space representations than VAEs, leading to improved test log-likelihood on density estimation benchmarks.

* Submitted to ICLR 2015
Click to Read Paper and Get Code
We present a deep hierarchical recurrent neural network for sequence tagging. Given a sequence of words, our model employs deep gated recurrent units on both character and word levels to encode morphology and context information, and applies a conditional random field layer to predict the tags. Our model is task independent, language independent, and feature engineering free. We further extend our model to multi-task and cross-lingual joint training by sharing the architecture and parameters. Our model achieves state-of-the-art results in multiple languages on several benchmark tasks including POS tagging, chunking, and NER. We also demonstrate that multi-task and cross-lingual joint training can improve the performance in various cases.

Click to Read Paper and Get Code
We propose a soft attention based model for the task of action recognition in videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpses. The model essentially learns which parts in the frames are relevant for the task at hand and attaches higher importance to them. We evaluate the model on UCF-11 (YouTube Action), HMDB-51 and Hollywood2 datasets and analyze how the model focuses its attention depending on the scene and the action being performed.

Click to Read Paper and Get Code
We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. Our model uses an encoder LSTM to map an input sequence into a fixed length representation. This representation is decoded using single or multiple decoder LSTMs to perform different tasks, such as reconstructing the input sequence, or predicting the future sequence. We experiment with two kinds of input sequences - patches of image pixels and high-level representations ("percepts") of video frames extracted using a pretrained convolutional net. We explore different design choices such as whether the decoder LSTMs should condition on the generated output. We analyze the outputs of the model qualitatively to see how well the model can extrapolate the learned video representation into the future and into the past. We try to visualize and interpret the learned features. We stress test the model by running it on longer time scales and on out-of-domain data. We further evaluate the representations by finetuning them for a supervised learning problem - human action recognition on the UCF-101 and HMDB-51 datasets. We show that the representations help improve classification accuracy, especially when there are only a few training examples. Even models pretrained on unrelated datasets (300 hours of YouTube videos) can help action recognition performance.

* Added link to code on github
Click to Read Paper and Get Code
We revisit the choice of SGD for training deep neural networks by reconsidering the appropriate geometry in which to optimize the weights. We argue for a geometry invariant to rescaling of weights that does not affect the output of the network, and suggest Path-SGD, which is an approximate steepest descent method with respect to a path-wise regularizer related to max-norm regularization. Path-SGD is easy and efficient to implement and leads to empirical gains over SGD and AdaGrad.

* 12 pages, 5 figures
Click to Read Paper and Get Code
We propose a new way of incorporating temporal information present in videos into Spatial Convolutional Neural Networks (ConvNets) trained on images, that avoids training Spatio-Temporal ConvNets from scratch. We describe several initializations of weights in 3D Convolutional Layers of Spatio-Temporal ConvNet using 2D Convolutional Weights learned from ImageNet. We show that it is important to initialize 3D Convolutional Weights judiciously in order to learn temporal representations of videos. We evaluate our methods on the UCF-101 dataset and demonstrate improvement over Spatial ConvNets.

* Technical Report
Click to Read Paper and Get Code
Attention has long been proposed by psychologists as important for effectively dealing with the enormous sensory stimulus available in the neocortex. Inspired by the visual attention models in computational neuroscience and the need of object-centric data for generative models, we describe for generative learning framework using attentional mechanisms. Attentional mechanisms can propagate signals from region of interest in a scene to an aligned canonical representation, where generative modeling takes place. By ignoring background clutter, generative models can concentrate their resources on the object of interest. Our model is a proper graphical model where the 2D Similarity transformation is a part of the top-down process. A ConvNet is employed to provide good initializations during posterior inference which is based on Hamiltonian Monte Carlo. Upon learning images of faces, our model can robustly attend to face regions of novel test subjects. More importantly, our model can learn generative models of new faces from a novel dataset of large images where the face locations are not known.

* In the proceedings of Neural Information Processing Systems, 2014
Click to Read Paper and Get Code
We introduce a new family of matrix norms, the "local max" norms, generalizing existing methods such as the max norm, the trace norm (nuclear norm), and the weighted or smoothed weighted trace norms, which have been extensively used in the literature as regularizers for matrix reconstruction problems. We show that this new family can be used to interpolate between the (weighted or unweighted) trace norm and the more conservative max norm. We test this interpolation on simulated data and on the large-scale Netflix and MovieLens ratings data, and find improved accuracy relative to the existing matrix norms. We also provide theoretical results showing learning guarantees for some of the new norms.

Click to Read Paper and Get Code
Visual perception is a challenging problem in part due to illumination variations. A possible solution is to first estimate an illumination invariant representation before using it for recognition. The object albedo and surface normals are examples of such representations. In this paper, we introduce a multilayer generative model where the latent variables include the albedo, surface normals, and the light source. Combining Deep Belief Nets with the Lambertian reflectance assumption, our model can learn good priors over the albedo from 2D images. Illumination variations can be explained by changing only the lighting latent variable in our model. By transferring learned knowledge from similar objects, albedo and surface normals estimation from a single image is possible in our model. Experiments demonstrate that our model is able to generalize as well as improve over standard baselines in one-shot face recognition.

* Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012)
Click to Read Paper and Get Code