Models, code, and papers for "Sameh K. Mohamed":

Unsupervised Hierarchical Grouping of Knowledge Graph Entities

Aug 20, 2019
Sameh K. Mohamed

Knowledge graphs have attracted lots of attention in academic and industrial environments. Despite their usefulness, popular knowledge graphs suffer from incompleteness of information, especially in their type assertions. This has encouraged research in the automatic discovery of entity types. In this context, multiple works were developed to utilize logical inference on ontologies and statistical machine learning methods to learn type assertion in knowledge graphs. However, these approaches suffer from limited performance on noisy data, limited scalability and the dependence on labeled training samples. In this work, we propose a new unsupervised approach that learns to categorize entities into a hierarchy of named groups. We show that our approach is able to effectively learn entity groups using a scalable procedure in noisy and sparse datasets. We experiment our approach on a set of popular knowledge graph benchmarking datasets, and we publish a collection of the outcome group hierarchies.

* 10 pages - LASCAR@ESWC'19 

  Click for Model/Code and Paper
Method and System for Image Analysis to Detect Cancer

Aug 26, 2019
Waleed A. Yousef, Ahmed A. Abouelkahire, Deyaaeldeen Almahallawi, Omar S. Marzouk, Sameh K. Mohamed, Waleed A. Mustafa, Omar M. Osama, Ali A. Saleh, Naglaa M. Abdelrazek

Breast cancer is the most common cancer and is the leading cause of cancer death among women worldwide. Detection of breast cancer, while it is still small and confined to the breast, provides the best chance of effective treatment. Computer Aided Detection (CAD) systems that detect cancer from mammograms will help in reducing the human errors that lead to missing breast carcinoma. Literature is rich of scientific papers for methods of CAD design, yet with no complete system architecture to deploy those methods. On the other hand, commercial CADs are developed and deployed only to vendors' mammography machines with no availability to public access. This paper presents a complete CAD; it is complete since it combines, on a hand, the rigor of algorithm design and assessment (method), and, on the other hand, the implementation and deployment of a system architecture for public accessibility (system). (1) We develop a novel algorithm for image enhancement so that mammograms acquired from any digital mammography machine look qualitatively of the same clarity to radiologists' inspection; and is quantitatively standardized for the detection algorithms. (2) We develop novel algorithms for masses and microcalcifications detection with accuracy superior to both literature results and the majority of approved commercial systems. (3) We design, implement, and deploy a system architecture that is computationally effective to allow for deploying these algorithms to cloud for public access.

  Click for Model/Code and Paper