Reinforcement learning traditionally considers the task of balancing exploration and exploitation. This work examines batch reinforcement learning--the task of maximally exploiting a given batch of off-policy data, without further data collection. We demonstrate that due to errors introduced by extrapolation, standard off-policy deep reinforcement learning algorithms, such as DQN and DDPG, are only capable of learning with data correlated to their current policy, making them ineffective for most off-policy applications. We introduce a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts the action space to force the agent towards behaving on-policy with respect to a subset of the given data. We extend this notion to deep reinforcement learning, and to the best of our knowledge, present the first continuous control deep reinforcement learning algorithm which can learn effectively from uncorrelated off-policy data.

Click to Read Paper
We consider the problem of scaling deep generative shape models to high-resolution. Drawing motivation from the canonical view representation of objects, we introduce a novel method for the fast up-sampling of 3D objects in voxel space through networks that perform super-resolution on the six orthographic depth projections. This allows us to generate high-resolution objects with more efficient scaling than methods which work directly in 3D. We decompose the problem of 2D depth super-resolution into silhouette and depth prediction to capture both structure and fine detail. This allows our method to generate sharp edges more easily than an individual network. We evaluate our work on multiple experiments concerning high-resolution 3D objects, and show our system is capable of accurately producing objects at resolutions as large as 512$\mathbf{\times}$512$\mathbf{\times}$512 -- the highest resolution reported for this task, to our knowledge. We achieve state-of-the-art performance on 3D object reconstruction from RGB images on the ShapeNet dataset, and further demonstrate the first effective 3D super-resolution method.

* 11 pages
Click to Read Paper
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.

* Accepted at ICML 2018
Click to Read Paper
Mesh models are a promising approach for encoding the structure of 3D objects. Current mesh reconstruction systems predict uniformly distributed vertex locations of a predetermined graph through a series of graph convolutions, leading to compromises with respect to performance or resolution. In this paper, we argue that the graph representation of geometric objects allows for additional structure, which should be leveraged for enhanced reconstruction. Thus, we propose a system which properly benefits from the advantages of the geometric structure of graph encoded objects by introducing (1) a graph convolutional update preserving vertex information; (2) an adaptive splitting heuristic allowing detail to emerge; and (3) a training objective operating both on the local surfaces defined by vertices as well as the global structure defined by the mesh. Our proposed method is evaluated on the task of 3D object reconstruction from images with the ShapeNet dataset, where we demonstrate state of the art performance, both visually and numerically, while having far smaller space requirements by generating adaptive meshes

* 18 pages
Click to Read Paper