We consider the case of a domain expert who wishes to explore the extent to which a particular idea is expressed in a text collection. We propose the task of semantically matching the idea, expressed as a natural language proposition, against a corpus. We create two preliminary tasks derived from existing datasets, and then introduce a more realistic one on disaster recovery designed for emergency managers, whom we engaged in a user study. On the latter, we find that a new model built from natural language entailment data produces higher-quality matches than simple word-vector averaging, both on expert-crafted queries and on ones produced by the subjects themselves. This work provides a proof-of-concept for such applications of semantic matching and illustrates key challenges. Click to Read Paper
Artificial intelligence methods have often been applied to perform specific functions or tasks in the cyber-defense realm. However, as adversary methods become more complex and difficult to divine, piecemeal efforts to understand cyber-attacks, and malware-based attacks in particular, are not providing sufficient means for malware analysts to understand the past, present and future characteristics of malware. In this paper, we present the Malware Analysis and Attributed using Genetic Information (MAAGI) system. The underlying idea behind the MAAGI system is that there are strong similarities between malware behavior and biological organism behavior, and applying biologically inspired methods to corpora of malware can help analysts better understand the ecosystem of malware attacks. Due to the sophistication of the malware and the analysis, the MAAGI system relies heavily on artificial intelligence techniques to provide this capability. It has already yielded promising results over its development life, and will hopefully inspire more integration between the artificial intelligence and cyber--defense communities. Click to Read Paper