Gaussian processes (GPs) are powerful non-parametric function estimators. However, their applications are largely limited by the expensive computational cost of the inference procedures. Existing stochastic or distributed synchronous variational inferences, although have alleviated this issue by scaling up GPs to millions of samples, are still far from satisfactory for real-world large applications, where the data sizes are often orders of magnitudes larger, say, billions. To solve this problem, we propose ADVGP, the first Asynchronous Distributed Variational Gaussian Process inference for regression, on the recent large-scale machine learning platform, PARAMETERSERVER. ADVGP uses a novel, flexible variational framework based on a weight space augmentation, and implements the highly efficient, asynchronous proximal gradient optimization. While maintaining comparable or better predictive performance, ADVGP greatly improves upon the efficiency of the existing variational methods. With ADVGP, we effortlessly scale up GP regression to a real-world application with billions of samples and demonstrate an excellent, superior prediction accuracy to the popular linear models.

* International Conference on Machine Learning 2017
Click to Read Paper
Given genetic variations and various phenotypical traits, such as Magnetic Resonance Imaging (MRI) features, we consider two important and related tasks in biomedical research: i)to select genetic and phenotypical markers for disease diagnosis and ii) to identify associations between genetic and phenotypical data. These two tasks are tightly coupled because underlying associations between genetic variations and phenotypical features contain the biological basis for a disease. While a variety of sparse models have been applied for disease diagnosis and canonical correlation analysis and its extensions have bee widely used in association studies (e.g., eQTL analysis), these two tasks have been treated separately. To unify these two tasks, we present a new sparse Bayesian approach for joint association study and disease diagnosis. In this approach, common latent features are extracted from different data sources based on sparse projection matrices and used to predict multiple disease severity levels based on Gaussian process ordinal regression; in return, the disease status is used to guide the discovery of relationships between the data sources. The sparse projection matrices not only reveal interactions between data sources but also select groups of biomarkers related to the disease. To learn the model from data, we develop an efficient variational expectation maximization algorithm. Simulation results demonstrate that our approach achieves higher accuracy in both predicting ordinal labels and discovering associations between data sources than alternative methods. We apply our approach to an imaging genetics dataset for the study of Alzheimer's Disease (AD). Our method identifies biologically meaningful relationships between genetic variations, MRI features, and AD status, and achieves significantly higher accuracy for predicting ordinal AD stages than the competing methods.

Click to Read Paper
Infinite Tucker Decomposition (InfTucker) and random function prior models, as nonparametric Bayesian models on infinite exchangeable arrays, are more powerful models than widely-used multilinear factorization methods including Tucker and PARAFAC decomposition, (partly) due to their capability of modeling nonlinear relationships between array elements. Despite their great predictive performance and sound theoretical foundations, they cannot handle massive data due to a prohibitively high training time. To overcome this limitation, we present Distributed Infinite Tucker (DINTUCKER), a large-scale nonlinear tensor decomposition algorithm on MAPREDUCE. While maintaining the predictive accuracy of InfTucker, it is scalable on massive data. DINTUCKER is based on a new hierarchical Bayesian model that enables local training of InfTucker on subarrays and information integration from all local training results. We use distributed stochastic gradient descent, coupled with variational inference, to train this model. We apply DINTUCKER to multidimensional arrays with billions of elements from applications in the "Read the Web" project (Carlson et al., 2010) and in information security and compare it with the state-of-the-art large-scale tensor decomposition method, GigaTensor. On both datasets, DINTUCKER achieves significantly higher prediction accuracy with less computational time.

Click to Read Paper
Recurrent Neural Networks (RNNs) are powerful sequence modeling tools. However, when dealing with high dimensional inputs, the training of RNNs becomes computational expensive due to the large number of model parameters. This hinders RNNs from solving many important computer vision tasks, such as Action Recognition in Videos and Image Captioning. To overcome this problem, we propose a compact and flexible structure, namely Block-Term tensor decomposition, which greatly reduces the parameters of RNNs and improves their training efficiency. Compared with alternative low-rank approximations, such as tensor-train RNN (TT-RNN), our method, Block-Term RNN (BT-RNN), is not only more concise (when using the same rank), but also able to attain a better approximation to the original RNNs with much fewer parameters. On three challenging tasks, including Action Recognition in Videos, Image Captioning and Image Generation, BT-RNN outperforms TT-RNN and the standard RNN in terms of both prediction accuracy and convergence rate. Specifically, BT-LSTM utilizes 17,388 times fewer parameters than the standard LSTM to achieve an accuracy improvement over 15.6\% in the Action Recognition task on the UCF11 dataset.

* CVPR2018
Click to Read Paper
Tensor factorization is a powerful tool to analyse multi-way data. Compared with traditional multi-linear methods, nonlinear tensor factorization models are capable of capturing more complex relationships in the data. However, they are computationally expensive and may suffer severe learning bias in case of extreme data sparsity. To overcome these limitations, in this paper we propose a distributed, flexible nonlinear tensor factorization model. Our model can effectively avoid the expensive computations and structural restrictions of the Kronecker-product in existing TGP formulations, allowing an arbitrary subset of tensorial entries to be selected to contribute to the training. At the same time, we derive a tractable and tight variational evidence lower bound (ELBO) that enables highly decoupled, parallel computations and high-quality inference. Based on the new bound, we develop a distributed inference algorithm in the MapReduce framework, which is key-value-free and can fully exploit the memory cache mechanism in fast MapReduce systems such as SPARK. Experimental results fully demonstrate the advantages of our method over several state-of-the-art approaches, in terms of both predictive performance and computational efficiency. Moreover, our approach shows a promising potential in the application of Click-Through-Rate (CTR) prediction for online advertising.

* Gaussian process, tensor factorization, multidimensional arrays, large scale, spark, map-reduce
Click to Read Paper