Adversarial sample attacks perturb benign inputs to induce DNN misbehaviors. Recent research has demonstrated the widespread presence and the devastating consequences of such attacks. Existing defense techniques either assume prior knowledge of specific attacks or may not work well on complex models due to their underlying assumptions. We argue that adversarial sample attacks are deeply entangled with interpretability of DNN models: while classification results on benign inputs can be reasoned based on the human perceptible features/attributes, results on adversarial samples can hardly be explained. Therefore, we propose a novel adversarial sample detection technique for face recognition models, based on interpretability. It features a novel bi-directional correspondence inference between attributes and internal neurons to identify neurons critical for individual attributes. The activation values of critical neurons are enhanced to amplify the reasoning part of the computation and the values of other neurons are weakened to suppress the uninterpretable part. The classification results after such transformation are compared with those of the original model to detect adversaries. Results show that our technique can achieve 94% detection accuracy for 7 different kinds of attacks with 9.91% false positives on benign inputs. In contrast, a state-of-the-art feature squeezing technique can only achieve 55% accuracy with 23.3% false positives. Click to Read Paper
Compact neural networks are inclined to exploit "sparsely-connected" convolutions such as depthwise convolution and group convolution for employment in mobile applications. Compared with standard "fully-connected" convolutions, these convolutions are more computationally economical. However, "sparsely-connected" convolutions block the inter-group information exchange, which induces severe performance degradation. To address this issue, we present two novel operations named merging and evolution to leverage the inter-group information. Our key idea is encoding the inter-group information with a narrow feature map, then combining the generated features with the original network for better representation. Taking advantage of the proposed operations, we then introduce the Merging-and-Evolution (ME) module, an architectural unit specifically designed for compact networks. Finally, we propose a family of compact neural networks called MENet based on ME modules. Extensive experiments on ILSVRC 2012 dataset and PASCAL VOC 2007 dataset demonstrate that MENet consistently outperforms other state-of-the-art compact networks under different computational budgets. For instance, under the computational budget of 140 MFLOPs, MENet surpasses ShuffleNet by 1% and MobileNet by 1.95% on ILSVRC 2012 top-1 accuracy, while by 2.3% and 4.1% on PASCAL VOC 2007 mAP, respectively. Click to Read Paper