This paper presents a simple method for "do as I do" motion transfer: given a source video of a person dancing we can transfer that performance to a novel (amateur) target after only a few minutes of the target subject performing standard moves. We pose this problem as a per-frame image-to-image translation with spatio-temporal smoothing. Using pose detections as an intermediate representation between source and target, we learn a mapping from pose images to a target subject's appearance. We adapt this setup for temporally coherent video generation including realistic face synthesis. Our video demo can be found at . Click to Read Paper
Although the human visual system is surprisingly robust to extreme distortion when recognizing objects, most evaluations of computer object detection methods focus only on robustness to natural form deformations such as people's pose changes. To determine whether algorithms truly mirror the flexibility of human vision, they must be compared against human vision at its limits. For example, in Cubist abstract art, painted objects are distorted by object fragmentation and part-reorganization, to the point that human vision often fails to recognize them. In this paper, we evaluate existing object detection methods on these abstract renditions of objects, comparing human annotators to four state-of-the-art object detectors on a corpus of Picasso paintings. Our results demonstrate that while human perception significantly outperforms current methods, human perception and part-based models exhibit a similarly graceful degradation in object detection performance as the objects become increasingly abstract and fragmented, corroborating the theory of part-based object representation in the brain. Click to Read Paper
Many details about our world are not captured in written records because they are too mundane or too abstract to describe in words. Fortunately, since the invention of the camera, an ever-increasing number of photographs capture much of this otherwise lost information. This plethora of artifacts documenting our "visual culture" is a treasure trove of knowledge as yet untapped by historians. We present a dataset of 37,921 frontal-facing American high school yearbook photos that allow us to use computation to glimpse into the historical visual record too voluminous to be evaluated manually. The collected portraits provide a constant visual frame of reference with varying content. We can therefore use them to consider issues such as a decade's defining style elements, or trends in fashion and social norms over time. We demonstrate that our historical image dataset may be used together with weakly-supervised data-driven techniques to perform scalable historical analysis of large image corpora with minimal human effort, much in the same way that large text corpora together with natural language processing revolutionized historians' workflow. Furthermore, we demonstrate the use of our dataset in dating grayscale portraits using deep learning methods. Click to Read Paper
While members of Congress now routinely communicate with constituents using images on a variety of internet platforms, little is known about how images are used as a means of strategic political communication. This is due primarily to computational limitations which have prevented large-scale, systematic analyses of image features. New developments in computer vision, however, are bringing the systematic study of images within reach. Here, we develop a framework for understanding visual political communication by extending Fenno's analysis of home style (Fenno 1978) to images and introduce "photographic" home styles. Using approximately 192,000 photographs collected from MCs Facebook profiles, we build machine learning software with convolutional neural networks and conduct an image manipulation experiment to explore how the race of people that MCs pose with shape photographic home styles. We find evidence that electoral pressures shape photographic home styles and demonstrate that Democratic and Republican members of Congress use images in very different ways. Click to Read Paper