Models, code, and papers for "Shlomo Dubnov":

Query-based Deep Improvisation

Jun 21, 2019
Shlomo Dubnov

In this paper we explore techniques for generating new music using a Variational Autoencoder (VAE) neural network that was trained on a corpus of specific style. Instead of randomly sampling the latent states of the network to produce free improvisation, we generate new music by querying the network with musical input in a style different from the training corpus. This allows us to produce new musical output with longer-term structure that blends aspects of the query to the style of the network. In order to control the level of this blending we add a noisy channel between the VAE encoder and decoder using bit-allocation algorithm from communication rate-distortion theory. Our experiments provide new insight into relations between the representational and structural information of latent states and the query signal, suggesting their possible use for composition purposes.

* 7th International Workshop on Musical Metacreation, International Conference on Computational Creativity 2019 

  Click for Model/Code and Paper
Rethinking Recurrent Latent Variable Model for Music Composition

Oct 07, 2018
Eunjeong Stella Koh, Shlomo Dubnov, Dustin Wright

We present a model for capturing musical features and creating novel sequences of music, called the Convolutional Variational Recurrent Neural Network. To generate sequential data, the model uses an encoder-decoder architecture with latent probabilistic connections to capture the hidden structure of music. Using the sequence-to-sequence model, our generative model can exploit samples from a prior distribution and generate a longer sequence of music. We compare the performance of our proposed model with other types of Neural Networks using the criteria of Information Rate that is implemented by Variable Markov Oracle, a method that allows statistical characterization of musical information dynamics and detection of motifs in a song. Our results suggest that the proposed model has a better statistical resemblance to the musical structure of the training data, which improves the creation of new sequences of music in the style of the originals.

* Published as a conference paper at IEEE MMSP 2018 

  Click for Model/Code and Paper
The Effect of Explicit Structure Encoding of Deep Neural Networks for Symbolic Music Generation

Nov 20, 2018
Ke Chen, Weilin Zhang, Shlomo Dubnov, Gus Xia

With recent breakthroughs in artificial neural networks, deep generative models have become one of the leading techniques for computational creativity. Despite very promising progress on image and short sequence generation, symbolic music generation remains a challenging problem since the structure of compositions are usually complicated. In this study, we attempt to solve the melody generation problem constrained by the given chord progression. This music meta-creation problem can also be incorporated into a plan recognition system with user inputs and predictive structural outputs. In particular, we explore the effect of explicit architectural encoding of musical structure via comparing two sequential generative models: LSTM (a type of RNN) and WaveNet (dilated temporal-CNN). As far as we know, this is the first study of applying WaveNet to symbolic music generation, as well as the first systematic comparison between temporal-CNN and RNN for music generation. We conduct a survey for evaluation in our generations and implemented Variable Markov Oracle in music pattern discovery. Experimental results show that to encode structure more explicitly using a stack of dilated convolution layers improved the performance significantly, and a global encoding of underlying chord progression into the generation procedure gains even more.

* 8 pages, 13 figures 

  Click for Model/Code and Paper
Adversarial Reprogramming of Sequence Classification Neural Networks

Sep 07, 2018
Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov, Farinaz Koushanfar

Adversarial Reprogramming has demonstrated success in utilizing pre-trained neural network classifiers for alternative classification tasks without modification to the original network. An adversary in such an attack scenario trains an additive contribution to the inputs to repurpose the neural network for the new classification task. While this reprogramming approach works for neural networks with a continuous input space such as that of images, it is not directly applicable to neural networks trained for tasks such as text classification, where the input space is discrete. Repurposing such classification networks would require the attacker to learn an adversarial program that maps inputs from one discrete space to the other. In this work, we introduce a context-based vocabulary remapping model to reprogram neural networks trained on a specific sequence classification task, for a new sequence classification task desired by the adversary. We propose training procedures for this adversarial program in both white-box and black-box settings. We demonstrate the application of our model by adversarially repurposing various text-classification models including LSTM, bi-directional LSTM and CNN for alternate classification tasks.

* 10 pages, 5 figures, 2 tables 

  Click for Model/Code and Paper
Expediting TTS Synthesis with Adversarial Vocoding

Apr 16, 2019
Paarth Neekhara, Chris Donahue, Miller Puckette, Shlomo Dubnov, Julian McAuley

Recent approaches in text-to-speech (TTS) synthesis employ neural network strategies to vocode perceptually-informed spectrogram representations directly into listenable waveforms. Such vocoding procedures create a computational bottleneck in modern TTS pipelines. We propose an alternative approach which utilizes generative adversarial networks (GANs) to learn mappings from perceptually-informed spectrograms to simple magnitude spectrograms which can be heuristically vocoded. Through a user study, we show that our approach significantly outperforms na\"ive vocoding strategies while being hundreds of times faster than neural network vocoders used in state-of-the-art TTS systems. We also show that our method can be used to achieve state-of-the-art results in unsupervised synthesis of individual words of speech.


  Click for Model/Code and Paper
Universal Adversarial Perturbations for Speech Recognition Systems

May 09, 2019
Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dubnov, Julian McAuley, Farinaz Koushanfar

In this work, we demonstrate the existence of universal adversarial audio perturbations that cause mis-transcription of audio signals by automatic speech recognition (ASR) systems. We propose an algorithm to find a single quasi-imperceptible perturbation, which when added to any arbitrary speech signal, will most likely fool the victim speech recognition model. Our experiments demonstrate the application of our proposed technique by crafting audio-agnostic universal perturbations for the state-of-the-art ASR system -- Mozilla DeepSpeech. Additionally, we show that such perturbations generalize to a significant extent across models that are not available during training, by performing a transferability test on a WaveNet based ASR system.

* 5 Pages, 3 figures 

  Click for Model/Code and Paper