Models, code, and papers for "Shubham Tulsiani":

Viewpoints and Keypoints

Apr 26, 2015
Shubham Tulsiani, Jitendra Malik

We characterize the problem of pose estimation for rigid objects in terms of determining viewpoint to explain coarse pose and keypoint prediction to capture the finer details. We address both these tasks in two different settings - the constrained setting with known bounding boxes and the more challenging detection setting where the aim is to simultaneously detect and correctly estimate pose of objects. We present Convolutional Neural Network based architectures for these and demonstrate that leveraging viewpoint estimates can substantially improve local appearance based keypoint predictions. In addition to achieving significant improvements over state-of-the-art in the above tasks, we analyze the error modes and effect of object characteristics on performance to guide future efforts towards this goal.


  Click for Model/Code and Paper
Canonical Surface Mapping via Geometric Cycle Consistency

Aug 15, 2019
Nilesh Kulkarni, Abhinav Gupta, Shubham Tulsiani

We explore the task of Canonical Surface Mapping (CSM). Specifically, given an image, we learn to map pixels on the object to their corresponding locations on an abstract 3D model of the category. But how do we learn such a mapping? A supervised approach would require extensive manual labeling which is not scalable beyond a few hand-picked categories. Our key insight is that the CSM task (pixel to 3D), when combined with 3D projection (3D to pixel), completes a cycle. Hence, we can exploit a geometric cycle consistency loss, thereby allowing us to forgo the dense manual supervision. Our approach allows us to train a CSM model for a diverse set of classes, without sparse or dense keypoint annotation, by leveraging only foreground mask labels for training. We show that our predictions also allow us to infer dense correspondence between two images, and compare the performance of our approach against several methods that predict correspondence by leveraging varying amount of supervision.

* To appear at ICCV 2019. Project page: https://nileshkulkarni.github.io/csm/ 

  Click for Model/Code and Paper
Layer-structured 3D Scene Inference via View Synthesis

Jul 26, 2018
Shubham Tulsiani, Richard Tucker, Noah Snavely

We present an approach to infer a layer-structured 3D representation of a scene from a single input image. This allows us to infer not only the depth of the visible pixels, but also to capture the texture and depth for content in the scene that is not directly visible. We overcome the challenge posed by the lack of direct supervision by instead leveraging a more naturally available multi-view supervisory signal. Our insight is to use view synthesis as a proxy task: we enforce that our representation (inferred from a single image), when rendered from a novel perspective, matches the true observed image. We present a learning framework that operationalizes this insight using a new, differentiable novel view renderer. We provide qualitative and quantitative validation of our approach in two different settings, and demonstrate that we can learn to capture the hidden aspects of a scene.

* Project url: http://shubhtuls.github.io/lsi 

  Click for Model/Code and Paper
Multi-view Consistency as Supervisory Signal for Learning Shape and Pose Prediction

Apr 24, 2018
Shubham Tulsiani, Alexei A. Efros, Jitendra Malik

We present a framework for learning single-view shape and pose prediction without using direct supervision for either. Our approach allows leveraging multi-view observations from unknown poses as supervisory signal during training. Our proposed training setup enforces geometric consistency between the independently predicted shape and pose from two views of the same instance. We consequently learn to predict shape in an emergent canonical (view-agnostic) frame along with a corresponding pose predictor. We show empirical and qualitative results using the ShapeNet dataset and observe encouragingly competitive performance to previous techniques which rely on stronger forms of supervision. We also demonstrate the applicability of our framework in a realistic setting which is beyond the scope of existing techniques: using a training dataset comprised of online product images where the underlying shape and pose are unknown.

* Project url with code: https://shubhtuls.github.io/mvcSnP/ 

  Click for Model/Code and Paper
Hierarchical Surface Prediction for 3D Object Reconstruction

Nov 06, 2017
Christian Häne, Shubham Tulsiani, Jitendra Malik

Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as a single color image. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture the surface of the objects well. We propose a general framework, called hierarchical surface prediction (HSP), which facilitates prediction of high resolution voxel grids. The main insight is that it is sufficient to predict high resolution voxels around the predicted surfaces. The exterior and interior of the objects can be represented with coarse resolution voxels. Our approach is not dependent on a specific input type. We show results for geometry prediction from color images, depth images and shape completion from partial voxel grids. Our analysis shows that our high resolution predictions are more accurate than low resolution predictions.

* 3DV 2017 

  Click for Model/Code and Paper
Pose Induction for Novel Object Categories

Sep 28, 2015
Shubham Tulsiani, João Carreira, Jitendra Malik

We address the task of predicting pose for objects of unannotated object categories from a small seed set of annotated object classes. We present a generalized classifier that can reliably induce pose given a single instance of a novel category. In case of availability of a large collection of novel instances, our approach then jointly reasons over all instances to improve the initial estimates. We empirically validate the various components of our algorithm and quantitatively show that our method produces reliable pose estimates. We also show qualitative results on a diverse set of classes and further demonstrate the applicability of our system for learning shape models of novel object classes.


  Click for Model/Code and Paper
Efficient Bimanual Manipulation Using Learned Task Schemas

Sep 30, 2019
Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, Abhinav Gupta

We address the problem of effectively composing skills to solve sparse-reward tasks in the real world. Given a set of parameterized skills (such as exerting a force or doing a top grasp at a location), our goal is to learn policies that invoke these skills to efficiently solve such tasks. Our insight is that for many tasks, the learning process can be decomposed into learning a state-independent task schema (a sequence of skills to execute) and a policy to choose the parameterizations of the skills in a state-dependent manner. For such tasks, we show that explicitly modeling the schema's state-independence can yield significant improvements in sample efficiency for model-free reinforcement learning algorithms. Furthermore, these schemas can be transferred to solve related tasks, by simply re-learning the parameterizations with which the skills are invoked. We find that doing so enables learning to solve sparse-reward tasks on real-world robotic systems very efficiently. We validate our approach experimentally over a suite of robotic bimanual manipulation tasks, both in simulation and on real hardware. See videos at http://tinyurl.com/chitnis-schema .


  Click for Model/Code and Paper
Object-centric Forward Modeling for Model Predictive Control

Oct 08, 2019
Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, Shubham Tulsiani

We present an approach to learn an object-centric forward model, and show that this allows us to plan for sequences of actions to achieve distant desired goals. We propose to model a scene as a collection of objects, each with an explicit spatial location and implicit visual feature, and learn to model the effects of actions using random interaction data. Our model allows capturing the robot-object and object-object interactions, and leads to more sample-efficient and accurate predictions. We show that this learned model can be leveraged to search for action sequences that lead to desired goal configurations, and that in conjunction with a learned correction module, this allows for robust closed loop execution. We present experiments both in simulation and the real world, and show that our approach improves over alternate implicit or pixel-space forward models. Please see our project page (https://judyye.github.io/ocmpc/) for result videos.


  Click for Model/Code and Paper
Compositional Video Prediction

Aug 22, 2019
Yufei Ye, Maneesh Singh, Abhinav Gupta, Shubham Tulsiani

We present an approach for pixel-level future prediction given an input image of a scene. We observe that a scene is comprised of distinct entities that undergo motion and present an approach that operationalizes this insight. We implicitly predict future states of independent entities while reasoning about their interactions, and compose future video frames using these predicted states. We overcome the inherent multi-modality of the task using a global trajectory-level latent random variable, and show that this allows us to sample diverse and plausible futures. We empirically validate our approach against alternate representations and ways of incorporating multi-modality. We examine two datasets, one comprising of stacked objects that may fall, and the other containing videos of humans performing activities in a gym, and show that our approach allows realistic stochastic video prediction across these diverse settings. See https://judyye.github.io/CVP/ for video predictions.

* accepted to ICCV19 

  Click for Model/Code and Paper
3D-RelNet: Joint Object and Relational Network for 3D Prediction

Jun 06, 2019
Nilesh Kulkarni, Ishan Misra, Shubham Tulsiani, Abhinav Gupta

We propose an approach to predict the 3D shape and pose for the objects present in a scene. Existing learning based methods that pursue this goal make independent predictions per object, and do not leverage the relationships amongst them. We argue that reasoning about these relationships is crucial, and present an approach to incorporate these in a 3D prediction framework. In addition to independent per-object predictions, we predict pairwise relations in the form of relative 3D pose, and demonstrate that these can be easily incorporated to improve object level estimates. We report performance across different datasets (SUNCG, NYUv2), and show that our approach significantly improves over independent prediction approaches while also outperforming alternate implicit reasoning methods.

* Project page: https://nileshkulkarni.github.io/relative3d/ 

  Click for Model/Code and Paper
Learning Category-Specific Mesh Reconstruction from Image Collections

Jul 30, 2018
Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, Jitendra Malik

We present a learning framework for recovering the 3D shape, camera, and texture of an object from a single image. The shape is represented as a deformable 3D mesh model of an object category where a shape is parameterized by a learned mean shape and per-instance predicted deformation. Our approach allows leveraging an annotated image collection for training, where the deformable model and the 3D prediction mechanism are learned without relying on ground-truth 3D or multi-view supervision. Our representation enables us to go beyond existing 3D prediction approaches by incorporating texture inference as prediction of an image in a canonical appearance space. Additionally, we show that semantic keypoints can be easily associated with the predicted shapes. We present qualitative and quantitative results of our approach on CUB and PASCAL3D datasets and show that we can learn to predict diverse shapes and textures across objects using only annotated image collections. The project website can be found at https://akanazawa.github.io/cmr/.

* Project URL: https://akanazawa.github.io/cmr/ 

  Click for Model/Code and Paper
Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency

Apr 20, 2017
Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, Jitendra Malik

We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) term. We show that this formulation can be incorporated in a learning framework to leverage different types of multi-view observations e.g. foreground masks, depth, color images, semantics etc. as supervision for learning single-view 3D prediction. We present empirical analysis of our technique in a controlled setting. We also show that this approach allows us to improve over existing techniques for single-view reconstruction of objects from the PASCAL VOC dataset.

* To appear at CVPR 2017. Project webpage : https://shubhtuls.github.io/drc/ 

  Click for Model/Code and Paper
Amodal Completion and Size Constancy in Natural Scenes

Oct 01, 2015
Abhishek Kar, Shubham Tulsiani, João Carreira, Jitendra Malik

We consider the problem of enriching current object detection systems with veridical object sizes and relative depth estimates from a single image. There are several technical challenges to this, such as occlusions, lack of calibration data and the scale ambiguity between object size and distance. These have not been addressed in full generality in previous work. Here we propose to tackle these issues by building upon advances in object recognition and using recently created large-scale datasets. We first introduce the task of amodal bounding box completion, which aims to infer the the full extent of the object instances in the image. We then propose a probabilistic framework for learning category-specific object size distributions from available annotations and leverage these in conjunction with amodal completion to infer veridical sizes in novel images. Finally, we introduce a focal length prediction approach that exploits scene recognition to overcome inherent scaling ambiguities and we demonstrate qualitative results on challenging real-world scenes.

* Accepted to ICCV 2015 

  Click for Model/Code and Paper
Category-Specific Object Reconstruction from a Single Image

May 06, 2015
Abhishek Kar, Shubham Tulsiani, João Carreira, Jitendra Malik

Object reconstruction from a single image -- in the wild -- is a problem where we can make progress and get meaningful results today. This is the main message of this paper, which introduces an automated pipeline with pixels as inputs and 3D surfaces of various rigid categories as outputs in images of realistic scenes. At the core of our approach are deformable 3D models that can be learned from 2D annotations available in existing object detection datasets, that can be driven by noisy automatic object segmentations and which we complement with a bottom-up module for recovering high-frequency shape details. We perform a comprehensive quantitative analysis and ablation study of our approach using the recently introduced PASCAL 3D+ dataset and show very encouraging automatic reconstructions on PASCAL VOC.

* First two authors contributed equally. To appear at CVPR 2015 

  Click for Model/Code and Paper
Virtual View Networks for Object Reconstruction

Nov 22, 2014
João Carreira, Abhishek Kar, Shubham Tulsiani, Jitendra Malik

All that structure from motion algorithms "see" are sets of 2D points. We show that these impoverished views of the world can be faked for the purpose of reconstructing objects in challenging settings, such as from a single image, or from a few ones far apart, by recognizing the object and getting help from a collection of images of other objects from the same class. We synthesize virtual views by computing geodesics on novel networks connecting objects with similar viewpoints, and introduce techniques to increase the specificity and robustness of factorization-based object reconstruction in this setting. We report accurate object shape reconstruction from a single image on challenging PASCAL VOC data, which suggests that the current domain of applications of rigid structure-from-motion techniques may be significantly extended.


  Click for Model/Code and Paper
Factoring Shape, Pose, and Layout from the 2D Image of a 3D Scene

Apr 24, 2018
Shubham Tulsiani, Saurabh Gupta, David Fouhey, Alexei A. Efros, Jitendra Malik

The goal of this paper is to take a single 2D image of a scene and recover the 3D structure in terms of a small set of factors: a layout representing the enclosing surfaces as well as a set of objects represented in terms of shape and pose. We propose a convolutional neural network-based approach to predict this representation and benchmark it on a large dataset of indoor scenes. Our experiments evaluate a number of practical design questions, demonstrate that we can infer this representation, and quantitatively and qualitatively demonstrate its merits compared to alternate representations.

* Project url with code: https://shubhtuls.github.io/factored3d 

  Click for Model/Code and Paper
View Synthesis by Appearance Flow

Feb 11, 2017
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros

We address the problem of novel view synthesis: given an input image, synthesizing new images of the same object or scene observed from arbitrary viewpoints. We approach this as a learning task but, critically, instead of learning to synthesize pixels from scratch, we learn to copy them from the input image. Our approach exploits the observation that the visual appearance of different views of the same instance is highly correlated, and such correlation could be explicitly learned by training a convolutional neural network (CNN) to predict appearance flows -- 2-D coordinate vectors specifying which pixels in the input view could be used to reconstruct the target view. Furthermore, the proposed framework easily generalizes to multiple input views by learning how to optimally combine single-view predictions. We show that for both objects and scenes, our approach is able to synthesize novel views of higher perceptual quality than previous CNN-based techniques.


  Click for Model/Code and Paper
Shape and Symmetry Induction for 3D Objects

Nov 25, 2015
Shubham Tulsiani, Abhishek Kar, Qixing Huang, João Carreira, Jitendra Malik

Actions as simple as grasping an object or navigating around it require a rich understanding of that object's 3D shape from a given viewpoint. In this paper we repurpose powerful learning machinery, originally developed for object classification, to discover image cues relevant for recovering the 3D shape of potentially unfamiliar objects. We cast the problem as one of local prediction of surface normals and global detection of 3D reflection symmetry planes, which open the door for extrapolating occluded surfaces from visible ones. We demonstrate that our method is able to recover accurate 3D shape information for classes of objects it was not trained on, in both synthetic and real images.


  Click for Model/Code and Paper
Learning Unsupervised Multi-View Stereopsis via Robust Photometric Consistency

Jun 06, 2019
Tejas Khot, Shubham Agrawal, Shubham Tulsiani, Christoph Mertz, Simon Lucey, Martial Hebert

We present a learning based approach for multi-view stereopsis (MVS). While current deep MVS methods achieve impressive results, they crucially rely on ground-truth 3D training data, and acquisition of such precise 3D geometry for supervision is a major hurdle. Our framework instead leverages photometric consistency between multiple views as supervisory signal for learning depth prediction in a wide baseline MVS setup. However, naively applying photo consistency constraints is undesirable due to occlusion and lighting changes across views. To overcome this, we propose a robust loss formulation that: a) enforces first order consistency and b) for each point, selectively enforces consistency with some views, thus implicitly handling occlusions. We demonstrate our ability to learn MVS without 3D supervision using a real dataset, and show that each component of our proposed robust loss results in a significant improvement. We qualitatively observe that our reconstructions are often more complete than the acquired ground truth, further showing the merits of this approach. Lastly, our learned model generalizes to novel settings, and our approach allows adaptation of existing CNNs to datasets without ground-truth 3D by unsupervised finetuning. Project webpage: https://tejaskhot.github.io/unsup_mvs


  Click for Model/Code and Paper