Models, code, and papers for "Shuiwang Ji":

Graph Representation Learning via Hard and Channel-Wise Attention Networks

Jul 05, 2019
Hongyang Gao, Shuiwang Ji

Attention operators have been widely applied in various fields, including computer vision, natural language processing, and network embedding learning. Attention operators on graph data enables learnable weights when aggregating information from neighboring nodes. However, graph attention operators (GAOs) consume excessive computational resources, preventing their applications on large graphs. In addition, GAOs belong to the family of soft attention, instead of hard attention, which has been shown to yield better performance. In this work, we propose novel hard graph attention operator (hGAO) and channel-wise graph attention operator (cGAO). hGAO uses the hard attention mechanism by attending to only important nodes. Compared to GAO, hGAO improves performance and saves computational cost by only attending to important nodes. To further reduce the requirements on computational resources, we propose the cGAO that performs attention operations along channels. cGAO avoids the dependency on the adjacency matrix, leading to dramatic reductions in computational resource requirements. Experimental results demonstrate that our proposed deep models with the new operators achieve consistently better performance. Comparison results also indicates that hGAO achieves significantly better performance than GAO on both node and graph embedding tasks. Efficiency comparison shows that our cGAO leads to dramatic savings in computational resources, making them applicable to large graphs.

* 9 pages, KDD19 

  Click for Model/Code and Paper
Graph U-Nets

May 11, 2019
Hongyang Gao, Shuiwang Ji

We consider the problem of representation learning for graph data. Convolutional neural networks can naturally operate on images, but have significant challenges in dealing with graph data. Given images are special cases of graphs with nodes lie on 2D lattices, graph embedding tasks have a natural correspondence with image pixel-wise prediction tasks such as segmentation. While encoder-decoder architectures like U-Nets have been successfully applied on many image pixel-wise prediction tasks, similar methods are lacking for graph data. This is due to the fact that pooling and up-sampling operations are not natural on graph data. To address these challenges, we propose novel graph pooling (gPool) and unpooling (gUnpool) operations in this work. The gPool layer adaptively selects some nodes to form a smaller graph based on their scalar projection values on a trainable projection vector. We further propose the gUnpool layer as the inverse operation of the gPool layer. The gUnpool layer restores the graph into its original structure using the position information of nodes selected in the corresponding gPool layer. Based on our proposed gPool and gUnpool layers, we develop an encoder-decoder model on graph, known as the graph U-Nets. Our experimental results on node classification and graph classification tasks demonstrate that our methods achieve consistently better performance than previous models.

* 10 pages, ICML19 

  Click for Model/Code and Paper
Smoothed Dilated Convolutions for Improved Dense Prediction

Aug 27, 2018
Zhengyang Wang, Shuiwang Ji

Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various tasks like semantic image segmentation, object detection, audio generation, video modeling, and machine translation. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance of DCNNs with dilated convolutions. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. By analyzing them in both the original operation and the decomposition views, we further point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We evaluate our methods thoroughly on two datasets and visualize the smoothing effect through effective receptive field analysis. Experimental results show that our methods yield significant and consistent improvements on the performance of DCNNs with dilated convolutions, while adding negligible amounts of extra training parameters.

* In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2486-2495). 2018 
* Accepted by KDD2018. Code is publicly available at 

  Click for Model/Code and Paper
Learning Convolutional Text Representations for Visual Question Answering

Apr 18, 2018
Zhengyang Wang, Shuiwang Ji

Visual question answering is a recently proposed artificial intelligence task that requires a deep understanding of both images and texts. In deep learning, images are typically modeled through convolutional neural networks, and texts are typically modeled through recurrent neural networks. While the requirement for modeling images is similar to traditional computer vision tasks, such as object recognition and image classification, visual question answering raises a different need for textual representation as compared to other natural language processing tasks. In this work, we perform a detailed analysis on natural language questions in visual question answering. Based on the analysis, we propose to rely on convolutional neural networks for learning textual representations. By exploring the various properties of convolutional neural networks specialized for text data, such as width and depth, we present our "CNN Inception + Gate" model. We show that our model improves question representations and thus the overall accuracy of visual question answering models. We also show that the text representation requirement in visual question answering is more complicated and comprehensive than that in conventional natural language processing tasks, making it a better task to evaluate textual representation methods. Shallow models like fastText, which can obtain comparable results with deep learning models in tasks like text classification, are not suitable in visual question answering.

* In proceedings of the 2018 SIAM International Conference on Data Mining (pp. 594-602). 2018 
* Conference paper at SDM 2018. 

  Click for Model/Code and Paper
Efficient and Invariant Convolutional Neural Networks for Dense Prediction

Nov 24, 2017
Hongyang Gao, Shuiwang Ji

Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods based on kernel rotation and flip to enable rotation and flip invariance in convolutional neural networks. The kernel rotation can be achieved on kernels of 3 $\times$ 3, while kernel flip can be applied on kernels of any size. By rotating in eight or four angles, the convolutional layers could produce the corresponding number of feature maps based on eight or four different kernels. By using flip, the convolution layer can produce three feature maps. By combining produced feature maps using maxout, the resource requirement could be significantly reduced while still retain the invariance properties. Experimental results demonstrate that the proposed methods can achieve various invariance at reasonable resource requirements in terms of both memory and time.

* Gao, Hongyang, and Shuiwang Ji. "Efficient and Invariant Convolutional Neural Networks for Dense Prediction." In Data Mining (ICDM), 2017 IEEE International Conference on, pp. 871-876. IEEE, 2017 
* 6 pages, ICDM2017 

  Click for Model/Code and Paper
Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations

Jan 21, 2019
Hongyang Gao, Yongjun Chen, Shuiwang Ji

With the development of graph convolutional networks (GCN), deep learning methods have started to be used on graph data. In additional to convolutional layers, pooling layers are another important components of deep learning. However, no effective pooling methods have been developed for graphs currently. In this work, we propose the graph pooling (gPool) layer, which employs a trainable projection vector to measure the importance of nodes in graphs. By selecting the k-most important nodes to form the new graph, gPool achieves the same objective as regular max pooling layers operating on images. Another limitation of GCN when used on graph-based text representation tasks is that, GCNs do not consider the order information of nodes in graph. To address this limitation, we propose the hybrid convolutional (hConv) layer that combines GCN and regular convolutional operations. The hConv layer is capable of increasing receptive fields quickly and computing features automatically. Based on the proposed gPool and hConv layers, we develop new deep networks for text categorization tasks. Our results show that the networks based on gPool and hConv layers achieves new state-of-the-art performance as compared to baseline methods.

* 7 pages, WWW19 

  Click for Model/Code and Paper
ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions

Sep 05, 2018
Hongyang Gao, Zhengyang Wang, Shuiwang Ji

Convolutional neural networks (CNNs) have shown great capability of solving various artificial intelligence tasks. However, the increasing model size has raised challenges in employing them in resource-limited applications. In this work, we propose to compress deep models by using channel-wise convolutions, which re- place dense connections among feature maps with sparse ones in CNNs. Based on this novel operation, we build light-weight CNNs known as ChannelNets. Channel- Nets use three instances of channel-wise convolutions; namely group channel-wise convolutions, depth-wise separable channel-wise convolutions, and the convolu- tional classification layer. Compared to prior CNNs designed for mobile devices, ChannelNets achieve a significant reduction in terms of the number of parameters and computational cost without loss in accuracy. Notably, our work represents the first attempt to compress the fully-connected classification layer, which usually accounts for about 25% of total parameters in compact CNNs. Experimental results on the ImageNet dataset demonstrate that ChannelNets achieve consistently better performance compared to prior methods.

* 10 pages, NIPS18 

  Click for Model/Code and Paper
Large-Scale Learnable Graph Convolutional Networks

Aug 12, 2018
Hongyang Gao, Zhengyang Wang, Shuiwang Ji

Convolutional neural networks (CNNs) have achieved great success on grid-like data such as images, but face tremendous challenges in learning from more generic data such as graphs. In CNNs, the trainable local filters enable the automatic extraction of high-level features. The computation with filters requires a fixed number of ordered units in the receptive fields. However, the number of neighboring units is neither fixed nor are they ordered in generic graphs, thereby hindering the applications of convolutional operations. Here, we address these challenges by proposing the learnable graph convolutional layer (LGCL). LGCL automatically selects a fixed number of neighboring nodes for each feature based on value ranking in order to transform graph data into grid-like structures in 1-D format, thereby enabling the use of regular convolutional operations on generic graphs. To enable model training on large-scale graphs, we propose a sub-graph training method to reduce the excessive memory and computational resource requirements suffered by prior methods on graph convolutions. Our experimental results on node classification tasks in both transductive and inductive learning settings demonstrate that our methods can achieve consistently better performance on the Cora, Citeseer, Pubmed citation network, and protein-protein interaction network datasets. Our results also indicate that the proposed methods using sub-graph training strategy are more efficient as compared to prior approaches.

* In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1416-1424). ACM (2018) 

  Click for Model/Code and Paper
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation

May 19, 2017
Lei Cai, Hongyang Gao, Shuiwang Ji

Variational auto-encoder (VAE) is a powerful unsupervised learning framework for image generation. One drawback of VAE is that it generates blurry images due to its Gaussianity assumption and thus L2 loss. To allow the generation of high quality images by VAE, we increase the capacity of decoder network by employing residual blocks and skip connections, which also enable efficient optimization. To overcome the limitation of L2 loss, we propose to generate images in a multi-stage manner from coarse to fine. In the simplest case, the proposed multi-stage VAE divides the decoder into two components in which the second component generates refined images based on the course images generated by the first component. Since the second component is independent of the VAE model, it can employ other loss functions beyond the L2 loss and different model architectures. The proposed framework can be easily generalized to contain more than two components. Experiment results on the MNIST and CelebA datasets demonstrate that the proposed multi-stage VAE can generate sharper images as compared to those from the original VAE.

  Click for Model/Code and Paper
Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions

May 18, 2017
Zhengyang Wang, Hao Yuan, Shuiwang Ji

The key idea of variational auto-encoders (VAEs) resembles that of traditional auto-encoder models in which spatial information is supposed to be explicitly encoded in the latent space. However, the latent variables in VAEs are vectors, which are commonly interpreted as multiple feature maps of size 1x1. Such representations can only convey spatial information implicitly when coupled with powerful decoders. In this work, we propose spatial VAEs that use latent variables as feature maps of larger size to explicitly capture spatial information. This is achieved by allowing the latent variables to be sampled from matrix-variate normal (MVN) distributions whose parameters are computed from the encoder network. To increase dependencies among locations on latent feature maps and reduce the number of parameters, we further propose spatial VAEs via low-rank MVN distributions. Experimental results show that the proposed spatial VAEs outperform original VAEs in capturing rich structural and spatial information.

  Click for Model/Code and Paper
Multi-Task Feature Learning Via Efficient l2,1-Norm Minimization

May 09, 2012
Jun Liu, Shuiwang Ji, Jieping Ye

The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the l2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the l2,1-norm regularization is that it encourages multiple predictors to share similar sparsity patterns. However, the resulting optimization problem is challenging to solve due to the non-smoothness of the l2,1-norm regularization. In this paper, we propose to accelerate the computation by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov's method-an optimal first-order black-box method for smooth convex optimization. A key building block in solving the reformulations is the Euclidean projection. We show that the Euclidean projection for the first reformulation can be analytically computed, while the Euclidean projection for the second one can be computed in linear time. Empirical evaluations on several data sets verify the efficiency of the proposed algorithms.

* Appears in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI2009) 

  Click for Model/Code and Paper
Global Transformer U-Nets for Label-Free Prediction of Fluorescence Images

Jul 02, 2019
Yi Liu, Hao Yuan, Zhengyang Wang, Shuiwang Ji

Visualizing the details of different cellular structures is of great importance to elucidate cellular functions. However, it is challenging to obtain high quality images of different structures directly due to complex cellular environments. Fluorescence microscopy is a popular technique to label different structures but has several drawbacks. In particular, labeling is time consuming and may affect cell morphology, and simultaneous labels are inherently limited. This raises the need of building computational models to learn relationships between unlabeled and labeled fluorescence images, and to infer fluorescent labels of other unlabeled fluorescence images. We propose to develop a novel deep model for fluorescence image prediction. We first propose a novel network layer, known as the global transformer layer, that fuses global information from inputs effectively. The proposed global transformer layer can generate outputs with arbitrary dimensions, and can be employed for all the regular, down-sampling, and up-sampling operators. We then incorporate our proposed global transformer layers and dense blocks to build an U-Net like network. We believe such a design can promote feature reusing between layers. In addition, we propose a multi-scale input strategy to encourage networks to capture features at different scales. We conduct evaluations across various label-free prediction tasks to demonstrate the effectiveness of our approach. Both quantitative and qualitative results show that our method outperforms the state-of-the-art approach significantly. It is also shown that our proposed global transformer layer is useful to improve the fluorescence image prediction results.

* 8 pages, 3 figures, 4 tables 

  Click for Model/Code and Paper
Global Deep Learning Methods for Multimodality Isointense Infant Brain Image Segmentation

Dec 10, 2018
Zhengyang Wang, Na Zou, Dinggang Shen, Shuiwang Ji

An important step in early brain development study is to perform automatic segmentation of infant brain magnetic resonance (MR) images into cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) regions. This task is especially challenging in the isointense stage (approximately 6-8 months of age) when GM and WM exhibit similar levels of intensities in MR images. Deep learning has shown its great promise in various image segmentation tasks. However, existing models do not have an efficient and effective way to aggregate global information. They also suffer from information loss during up-sampling operations. In this work, we address these problems by proposing a global aggregation block, which can be flexibly used for global information fusion. We build a novel model based on 3D U-Net to make fast and accurate voxel-wise dense prediction. We perform thorough experiments, and results indicate that our model outperforms previous best models significantly on 3D multimodality isointense infant brain MR image segmentation.

* 10 pages, 9 figures, 8 tables 

  Click for Model/Code and Paper
Pixel Deconvolutional Networks

Nov 27, 2017
Hongyang Gao, Hao Yuan, Zhengyang Wang, Shuiwang Ji

Deconvolutional layers have been widely used in a variety of deep models for up-sampling, including encoder-decoder networks for semantic segmentation and deep generative models for unsupervised learning. One of the key limitations of deconvolutional operations is that they result in the so-called checkerboard problem. This is caused by the fact that no direct relationship exists among adjacent pixels on the output feature map. To address this problem, we propose the pixel deconvolutional layer (PixelDCL) to establish direct relationships among adjacent pixels on the up-sampled feature map. Our method is based on a fresh interpretation of the regular deconvolution operation. The resulting PixelDCL can be used to replace any deconvolutional layer in a plug-and-play manner without compromising the fully trainable capabilities of original models. The proposed PixelDCL may result in slight decrease in efficiency, but this can be overcome by an implementation trick. Experimental results on semantic segmentation demonstrate that PixelDCL can consider spatial features such as edges and shapes and yields more accurate segmentation outputs than deconvolutional layers. When used in image generation tasks, our PixelDCL can largely overcome the checkerboard problem suffered by regular deconvolution operations.

* 11 pages 

  Click for Model/Code and Paper
On Attribution of Recurrent Neural Network Predictions via Additive Decomposition

Mar 27, 2019
Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji, Xia Hu

RNN models have achieved the state-of-the-art performance in a wide range of text mining tasks. However, these models are often regarded as black-boxes and are criticized due to the lack of interpretability. In this paper, we enhance the interpretability of RNNs by providing interpretable rationales for RNN predictions. Nevertheless, interpreting RNNs is a challenging problem. Firstly, unlike existing methods that rely on local approximation, we aim to provide rationales that are more faithful to the decision making process of RNN models. Secondly, a flexible interpretation method should be able to assign contribution scores to text segments of varying lengths, instead of only to individual words. To tackle these challenges, we propose a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT decomposes the final prediction of a RNN into additive contribution of each word in the input text. This additive decomposition enables REAT to further obtain phrase-level attribution scores. In addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability of the proposed attribution method. Comprehensive analysis shows that our attribution method could unveil the useful linguistic knowledge captured by RNNs. Some analysis further demonstrates our method could be utilized as a debugging tool to examine the vulnerability and failure reasons of RNNs, which may lead to several promising future directions to promote generalization ability of RNNs.

* The 2019 Web Conference (WWW 2019) 

  Click for Model/Code and Paper
Dense Transformer Networks

Jun 08, 2017
Jun Li, Yongjun Chen, Lei Cai, Ian Davidson, Shuiwang Ji

The key idea of current deep learning methods for dense prediction is to apply a model on a regular patch centered on each pixel to make pixel-wise predictions. These methods are limited in the sense that the patches are determined by network architecture instead of learned from data. In this work, we propose the dense transformer networks, which can learn the shapes and sizes of patches from data. The dense transformer networks employ an encoder-decoder architecture, and a pair of dense transformer modules are inserted into each of the encoder and decoder paths. The novelty of this work is that we provide technical solutions for learning the shapes and sizes of patches from data and efficiently restoring the spatial correspondence required for dense prediction. The proposed dense transformer modules are differentiable, thus the entire network can be trained. We apply the proposed networks on natural and biological image segmentation tasks and show superior performance is achieved in comparison to baseline methods.

  Click for Model/Code and Paper
XFake: Explainable Fake News Detector with Visualizations

Jul 08, 2019
Fan Yang, Shiva K. Pentyala, Sina Mohseni, Mengnan Du, Hao Yuan, Rhema Linder, Eric D. Ragan, Shuiwang Ji, Xia Hu

In this demo paper, we present the XFake system, an explainable fake news detector that assists end-users to identify news credibility. To effectively detect and interpret the fakeness of news items, we jointly consider both attributes (e.g., speaker) and statements. Specifically, MIMIC, ATTN and PERT frameworks are designed, where MIMIC is built for attribute analysis, ATTN is for statement semantic analysis and PERT is for statement linguistic analysis. Beyond the explanations extracted from the designed frameworks, relevant supporting examples as well as visualization are further provided to facilitate the interpretation. Our implemented system is demonstrated on a real-world dataset crawled from PolitiFact, where thousands of verified political news have been collected.

* 4 pages, WebConf'2019 Demo 

  Click for Model/Code and Paper