Research papers and code for "Shuyang Sun":
The basic principles in designing convolutional neural network (CNN) structures for predicting objects on different levels, e.g., image-level, region-level, and pixel-level are diverging. Generally, network structures designed specifically for image classification are directly used as default backbone structure for other tasks including detection and segmentation, but there is seldom backbone structure designed under the consideration of unifying the advantages of networks designed for pixel-level or region-level predicting tasks, which may require very deep features with high resolution. Towards this goal, we design a fish-like network, called FishNet. In FishNet, the information of all resolutions is preserved and refined for the final task. Besides, we observe that existing works still cannot \emph{directly} propagate the gradient information from deep layers to shallow layers. Our design can better handle this problem. Extensive experiments have been conducted to demonstrate the remarkable performance of the FishNet. In particular, on ImageNet-1k, the accuracy of FishNet is able to surpass the performance of DenseNet and ResNet with fewer parameters. FishNet was applied as one of the modules in the winning entry of the COCO Detection 2018 challenge. The code is available at https://github.com/kevin-ssy/FishNet.

* NeurIPS 2018. Code available at https://github.com/kevin-ssy/FishNet
Click to Read Paper and Get Code
Motion representation plays a vital role in human action recognition in videos. In this study, we introduce a novel compact motion representation for video action recognition, named Optical Flow guided Feature (OFF), which enables the network to distill temporal information through a fast and robust approach. The OFF is derived from the definition of optical flow and is orthogonal to the optical flow. The derivation also provides theoretical support for using the difference between two frames. By directly calculating pixel-wise spatiotemporal gradients of the deep feature maps, the OFF could be embedded in any existing CNN based video action recognition framework with only a slight additional cost. It enables the CNN to extract spatiotemporal information, especially the temporal information between frames simultaneously. This simple but powerful idea is validated by experimental results. The network with OFF fed only by RGB inputs achieves a competitive accuracy of 93.3% on UCF-101, which is comparable with the result obtained by two streams (RGB and optical flow), but is 15 times faster in speed. Experimental results also show that OFF is complementary to other motion modalities such as optical flow. When the proposed method is plugged into the state-of-the-art video action recognition framework, it has 96:0% and 74:2% accuracy on UCF-101 and HMDB-51 respectively. The code for this project is available at https://github.com/kevin-ssy/Optical-Flow-Guided-Feature.

* CVPR 2018. code available at https://github.com/kevin-ssy/Optical-Flow-Guided-Feature
Click to Read Paper and Get Code
Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we find that the key to a successful instance segmentation cascade is to fully leverage the reciprocal relationship between detection and segmentation. In this work, we propose a new framework, Hybrid Task Cascade (HTC), which differs in two important aspects: (1) instead of performing cascaded refinement on these two tasks separately, it interweaves them for a joint multi-stage processing; (2) it adopts a fully convolutional branch to provide spatial context, which can help distinguishing hard foreground from cluttered background. Overall, this framework can learn more discriminative features progressively while integrating complementary features together in each stage. Without bells and whistles, a single HTC obtains 38.4% and 1.5% improvement over a strong Cascade Mask R-CNN baseline on MSCOCO dataset. More importantly, our overall system achieves 48.6 mask AP on the test-challenge dataset and 49.0 mask AP on test-dev, which are the state-of-the-art performance.

* Technical report. Winning entry of COCO 2018 Challenge (object detection task)
Click to Read Paper and Get Code
We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated.

* Technical report of MMDetection. 11 pages
Click to Read Paper and Get Code