Models, code, and papers for "Shuyang Sun":

FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction

Jan 11, 2019
Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang

The basic principles in designing convolutional neural network (CNN) structures for predicting objects on different levels, e.g., image-level, region-level, and pixel-level are diverging. Generally, network structures designed specifically for image classification are directly used as default backbone structure for other tasks including detection and segmentation, but there is seldom backbone structure designed under the consideration of unifying the advantages of networks designed for pixel-level or region-level predicting tasks, which may require very deep features with high resolution. Towards this goal, we design a fish-like network, called FishNet. In FishNet, the information of all resolutions is preserved and refined for the final task. Besides, we observe that existing works still cannot \emph{directly} propagate the gradient information from deep layers to shallow layers. Our design can better handle this problem. Extensive experiments have been conducted to demonstrate the remarkable performance of the FishNet. In particular, on ImageNet-1k, the accuracy of FishNet is able to surpass the performance of DenseNet and ResNet with fewer parameters. FishNet was applied as one of the modules in the winning entry of the COCO Detection 2018 challenge. The code is available at

* NeurIPS 2018. Code available at 

  Click for Model/Code and Paper
Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition

Jul 07, 2018
Shuyang Sun, Zhanghui Kuang, Wanli Ouyang, Lu Sheng, Wei Zhang

Motion representation plays a vital role in human action recognition in videos. In this study, we introduce a novel compact motion representation for video action recognition, named Optical Flow guided Feature (OFF), which enables the network to distill temporal information through a fast and robust approach. The OFF is derived from the definition of optical flow and is orthogonal to the optical flow. The derivation also provides theoretical support for using the difference between two frames. By directly calculating pixel-wise spatiotemporal gradients of the deep feature maps, the OFF could be embedded in any existing CNN based video action recognition framework with only a slight additional cost. It enables the CNN to extract spatiotemporal information, especially the temporal information between frames simultaneously. This simple but powerful idea is validated by experimental results. The network with OFF fed only by RGB inputs achieves a competitive accuracy of 93.3% on UCF-101, which is comparable with the result obtained by two streams (RGB and optical flow), but is 15 times faster in speed. Experimental results also show that OFF is complementary to other motion modalities such as optical flow. When the proposed method is plugged into the state-of-the-art video action recognition framework, it has 96:0% and 74:2% accuracy on UCF-101 and HMDB-51 respectively. The code for this project is available at

* CVPR 2018. code available at 

  Click for Model/Code and Paper
Robust Multi-Modality Multi-Object Tracking

Sep 09, 2019
Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, Chen Change Loy

Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multi-object tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi-object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multi-modality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report state-of-the-art performance. Code and models are available at

* To appear in ICCV 2019. Code and models are available at 

  Click for Model/Code and Paper
Hybrid Task Cascade for Instance Segmentation

Jan 22, 2019
Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, Chen Change Loy, Dahua Lin

Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we find that the key to a successful instance segmentation cascade is to fully leverage the reciprocal relationship between detection and segmentation. In this work, we propose a new framework, Hybrid Task Cascade (HTC), which differs in two important aspects: (1) instead of performing cascaded refinement on these two tasks separately, it interweaves them for a joint multi-stage processing; (2) it adopts a fully convolutional branch to provide spatial context, which can help distinguishing hard foreground from cluttered background. Overall, this framework can learn more discriminative features progressively while integrating complementary features together in each stage. Without bells and whistles, a single HTC obtains 38.4% and 1.5% improvement over a strong Cascade Mask R-CNN baseline on MSCOCO dataset. More importantly, our overall system achieves 48.6 mask AP on the test-challenge dataset and 49.0 mask AP on test-dev, which are the state-of-the-art performance.

* Technical report. Winning entry of COCO 2018 Challenge (object detection task) 

  Click for Model/Code and Paper
MMDetection: Open MMLab Detection Toolbox and Benchmark

Jun 17, 2019
Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, Dahua Lin

We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at The project is under active development and we will keep this document updated.

* Technical report of MMDetection. 11 pages 

  Click for Model/Code and Paper