Models, code, and papers for "Stella X. Yu":

Spatial Transformer for 3D Points

Jun 29, 2019
Jiayun Wang, Rudrasis Chakraborty, Stella X. Yu

Point cloud is an efficient representation of 3D data, and enables deep neural networks to effectively understand and model the 3D visual world. Previous point cloud processing networks utilized the same original 3D point coordinates at different layers to define local neighborhoods. The networks then learn the feature maps from local patches. It is easy to implement but not necessarily optimal. Ideally local neighborhood should be different at different layers so as to adapt to the specific layer for efficient feature learning. One way to achieve this is to learn transformations of the original point cloud at each layer, and then learn the feature maps from the ``local patches'' on the transformed coordinates. In this work, we propose a novel approach to learn non-rigid transformation of input point clouds at each layer. We propose both linear (affine) and non-linear (projective, deformable) spatial transformer on 3D point cloud. The proposed method outperforms the state-of-the-art static point neighborhood counterparts in several point cloud processing tasks (classification, segmentation and detection).

  Click for Model/Code and Paper
SurReal: Fréchet Mean and Distance Transform for Complex-Valued Deep Learning

Jun 24, 2019
Rudrasis Chakraborty, Jiayun Wang, Stella X. Yu

We develop a novel deep learning architecture for naturally complex-valued data, which is often subject to complex scaling ambiguity. We treat each sample as a field in the space of complex numbers. With the polar form of a complex-valued number, the general group that acts in this space is the product of planar rotation and non-zero scaling. This perspective allows us to develop not only a novel convolution operator using weighted Fr\'echet mean (wFM) on a Riemannian manifold, but also a novel fully connected layer operator using the distance to the wFM, with natural equivariant properties to non-zero scaling and planar rotation for the former and invariance properties for the latter. Compared to the baseline approach of learning real-valued neural network models on the two-channel real-valued representation of complex-valued data, our method achieves surreal performance on two publicly available complex-valued datasets: MSTAR on SAR images and RadioML on radio frequency signals. On MSTAR, at 8% of the baseline model size and with fewer than 45,000 parameters, our model improves the target classification accuracy from 94% to 98% on this highly imbalanced dataset. On RadioML, our model achieves comparable RF modulation classification accuracy at 10% of the baseline model size.

* IEEE Computer Vision and Pattern Recognition Workshop on Perception Beyond the Visible Spectrum, Long Beach, California, 16 June 2019 Best Paper Award 

  Click for Model/Code and Paper
Improving Generalization via Scalable Neighborhood Component Analysis

Aug 14, 2018
Zhirong Wu, Alexei A. Efros, Stella X. Yu

Current major approaches to visual recognition follow an end-to-end formulation that classifies an input image into one of the pre-determined set of semantic categories. Parametric softmax classifiers are a common choice for such a closed world with fixed categories, especially when big labeled data is available during training. However, this becomes problematic for open-set scenarios where new categories are encountered with very few examples for learning a generalizable parametric classifier. We adopt a non-parametric approach for visual recognition by optimizing feature embeddings instead of parametric classifiers. We use a deep neural network to learn the visual feature that preserves the neighborhood structure in the semantic space, based on the Neighborhood Component Analysis (NCA) criterion. Limited by its computational bottlenecks, we devise a mechanism to use augmented memory to scale NCA for large datasets and very deep networks. Our experiments deliver not only remarkable performance on ImageNet classification for such a simple non-parametric method, but most importantly a more generalizable feature representation for sub-category discovery and few-shot recognition.

* To appear in ECCV 2018 

  Click for Model/Code and Paper
Learning to Roam Free from Small-Space Autonomous Driving with A Path Planner

Mar 17, 2018
Sascha Hornauer, Karl Zipser, Stella X. Yu

Modern autonomous driving algorithms often rely on learning the mapping from visual inputs to steering actions from human driving data in a variety of scenarios and visual scenes. The required data collection is not only labor intensive, but such data are often noisy, inconsistent, and inflexible, as there is no differentiation between good and bad drivers, or between different driving intentions. We propose a new autonomous driving approach that learns roaming skills from an optimal path planner. Our model car practices reaching random target locations in a small room with obstacles, by following the optimal trajectory and executing the steering actions decided by a planner. We learn the associations of driving behaviours with depth images, instead of raw color images of the visual scene. This more universal spatial representation allows the learned driving skills to transfer immediately to novel environments with different visual appearances. Our model car trained in a simple room, void of many visual features, demonstrates surprisingly good driving performance in a cluttered office environment, avoiding collisions with novel obstacles and unseen layouts of drive-able space. Its performance on outdoor curbside driving is also on par with human driving.

* Changes to previous version: Added further evaluations. Added tests in different environment. Added depth-input validation. Dropped multi-task learning aspect. Currently under review for publication at the ECCV 2018 

  Click for Model/Code and Paper
Joint Embedding and Classification for SAR Target Recognition

Dec 16, 2017
Jiayun Wang, Patrick Virtue, Stella X. Yu

Deep learning can be an effective and efficient means to automatically detect and classify targets in synthetic aperture radar (SAR) images, but it is critical for trained neural networks to be robust to variations that exist between training and test environments. The layers in a neural network can be understood as successive transformations of an input image into embedded feature representations and ultimately into a semantic class label. To address the overfitting problem in SAR target classification, we train neural networks to optimize the spatial clustering of points in the embedded space in addition to optimizing the final classification score. We demonstrate that networks trained with this dual embedding and classification loss outperform networks with classification loss only. We study placing the embedding loss after different network layers and find that applying the embedding loss on the classification space results in the best SAR classification performance. Finally, our visualization of the network's ten-dimensional classification space supports our claim that the embedding loss encourages greater separation between target class clusters for both training and testing partitions of the MSTAR dataset.

  Click for Model/Code and Paper
Better than Real: Complex-valued Neural Nets for MRI Fingerprinting

Jul 01, 2017
Patrick Virtue, Stella X. Yu, Michael Lustig

The task of MRI fingerprinting is to identify tissue parameters from complex-valued MRI signals. The prevalent approach is dictionary based, where a test MRI signal is compared to stored MRI signals with known tissue parameters and the most similar signals and tissue parameters retrieved. Such an approach does not scale with the number of parameters and is rather slow when the tissue parameter space is large. Our first novel contribution is to use deep learning as an efficient nonlinear inverse mapping approach. We generate synthetic (tissue, MRI) data from an MRI simulator, and use them to train a deep net to map the MRI signal to the tissue parameters directly. Our second novel contribution is to develop a complex-valued neural network with new cardioid activation functions. Our results demonstrate that complex-valued neural nets could be much more accurate than real-valued neural nets at complex-valued MRI fingerprinting.

* Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 2017 

  Click for Model/Code and Paper
Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding

Apr 11, 2016
Michael Maire, Takuya Narihira, Stella X. Yu

Spectral embedding provides a framework for solving perceptual organization problems, including image segmentation and figure/ground organization. From an affinity matrix describing pairwise relationships between pixels, it clusters pixels into regions, and, using a complex-valued extension, orders pixels according to layer. We train a convolutional neural network (CNN) to directly predict the pairwise relationships that define this affinity matrix. Spectral embedding then resolves these predictions into a globally-consistent segmentation and figure/ground organization of the scene. Experiments demonstrate significant benefit to this direct coupling compared to prior works which use explicit intermediate stages, such as edge detection, on the pathway from image to affinities. Our results suggest spectral embedding as a powerful alternative to the conditional random field (CRF)-based globalization schemes typically coupled to deep neural networks.

* minor updates; extended version of CVPR 2016 conference paper 

  Click for Model/Code and Paper
Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression

Dec 08, 2015
Takuya Narihira, Michael Maire, Stella X. Yu

We introduce a new approach to intrinsic image decomposition, the task of decomposing a single image into albedo and shading components. Our strategy, which we term direct intrinsics, is to learn a convolutional neural network (CNN) that directly predicts output albedo and shading channels from an input RGB image patch. Direct intrinsics is a departure from classical techniques for intrinsic image decomposition, which typically rely on physically-motivated priors and graph-based inference algorithms. The large-scale synthetic ground-truth of the MPI Sintel dataset plays a key role in training direct intrinsics. We demonstrate results on both the synthetic images of Sintel and the real images of the classic MIT intrinsic image dataset. On Sintel, direct intrinsics, using only RGB input, outperforms all prior work, including methods that rely on RGB+Depth input. Direct intrinsics also generalizes across modalities; it produces quite reasonable decompositions on the real images of the MIT dataset. Our results indicate that the marriage of CNNs with synthetic training data may be a powerful new technique for tackling classic problems in computer vision.

* International Conference on Computer Vision (ICCV), 2015 

  Click for Model/Code and Paper
Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

Oct 16, 2014
Michael Maire, Stella X. Yu, Pietro Perona

We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.

* to appear in Asian Conference on Computer Vision (ACCV), 2014 

  Click for Model/Code and Paper
Multigrid Neural Architectures

May 11, 2017
Tsung-Wei Ke, Michael Maire, Stella X. Yu

We propose a multigrid extension of convolutional neural networks (CNNs). Rather than manipulating representations living on a single spatial grid, our network layers operate across scale space, on a pyramid of grids. They consume multigrid inputs and produce multigrid outputs; convolutional filters themselves have both within-scale and cross-scale extent. This aspect is distinct from simple multiscale designs, which only process the input at different scales. Viewed in terms of information flow, a multigrid network passes messages across a spatial pyramid. As a consequence, receptive field size grows exponentially with depth, facilitating rapid integration of context. Most critically, multigrid structure enables networks to learn internal attention and dynamic routing mechanisms, and use them to accomplish tasks on which modern CNNs fail. Experiments demonstrate wide-ranging performance advantages of multigrid. On CIFAR and ImageNet classification tasks, flipping from a single grid to multigrid within the standard CNN paradigm improves accuracy, while being compute and parameter efficient. Multigrid is independent of other architectural choices; we show synergy in combination with residual connections. Multigrid yields dramatic improvement on a synthetic semantic segmentation dataset. Most strikingly, relatively shallow multigrid networks can learn to directly perform spatial transformation tasks, where, in contrast, current CNNs fail. Together, our results suggest that continuous evolution of features on a multigrid pyramid is a more powerful alternative to existing CNN designs on a flat grid.

* updated with ImageNet results; to appear at CVPR 2017 

  Click for Model/Code and Paper
Convolutional Random Walk Networks for Semantic Image Segmentation

May 08, 2017
Gedas Bertasius, Lorenzo Torresani, Stella X. Yu, Jianbo Shi

Most current semantic segmentation methods rely on fully convolutional networks (FCNs). However, their use of large receptive fields and many pooling layers cause low spatial resolution inside the deep layers. This leads to predictions with poor localization around the boundaries. Prior work has attempted to address this issue by post-processing predictions with CRFs or MRFs. But such models often fail to capture semantic relationships between objects, which causes spatially disjoint predictions. To overcome these problems, recent methods integrated CRFs or MRFs into an FCN framework. The downside of these new models is that they have much higher complexity than traditional FCNs, which renders training and testing more challenging. In this work we introduce a simple, yet effective Convolutional Random Walk Network (RWN) that addresses the issues of poor boundary localization and spatially fragmented predictions with very little increase in model complexity. Our proposed RWN jointly optimizes the objectives of pixelwise affinity and semantic segmentation. It combines these two objectives via a novel random walk layer that enforces consistent spatial grouping in the deep layers of the network. Our RWN is implemented using standard convolution and matrix multiplication. This allows an easy integration into existing FCN frameworks and it enables end-to-end training of the whole network via standard back-propagation. Our implementation of RWN requires just $131$ additional parameters compared to the traditional FCNs, and yet it consistently produces an improvement over the FCNs on semantic segmentation and scene labeling.

  Click for Model/Code and Paper
Learning Non-Lambertian Object Intrinsics across ShapeNet Categories

Dec 27, 2016
Jian Shi, Yue Dong, Hao Su, Stella X. Yu

We consider the non-Lambertian object intrinsic problem of recovering diffuse albedo, shading, and specular highlights from a single image of an object. We build a large-scale object intrinsics database based on existing 3D models in the ShapeNet database. Rendered with realistic environment maps, millions of synthetic images of objects and their corresponding albedo, shading, and specular ground-truth images are used to train an encoder-decoder CNN. Once trained, the network can decompose an image into the product of albedo and shading components, along with an additive specular component. Our CNN delivers accurate and sharp results in this classical inverse problem of computer vision, sharp details attributed to skip layer connections at corresponding resolutions from the encoder to the decoder. Benchmarked on our ShapeNet and MIT intrinsics datasets, our model consistently outperforms the state-of-the-art by a large margin. We train and test our CNN on different object categories. Perhaps surprising especially from the CNN classification perspective, our intrinsics CNN generalizes very well across categories. Our analysis shows that feature learning at the encoder stage is more crucial for developing a universal representation across categories. We apply our synthetic data trained model to images and videos downloaded from the internet, and observe robust and realistic intrinsics results. Quality non-Lambertian intrinsics could open up many interesting applications such as image-based albedo and specular editing.

  Click for Model/Code and Paper
Fine-to-coarse Knowledge Transfer For Low-Res Image Classification

May 21, 2016
Xingchao Peng, Judy Hoffman, Stella X. Yu, Kate Saenko

We address the difficult problem of distinguishing fine-grained object categories in low resolution images. Wepropose a simple an effective deep learning approach that transfers fine-grained knowledge gained from high resolution training data to the coarse low-resolution test scenario. Such fine-to-coarse knowledge transfer has many real world applications, such as identifying objects in surveillance photos or satellite images where the image resolution at the test time is very low but plenty of high resolution photos of similar objects are available. Our extensive experiments on two standard benchmark datasets containing fine-grained car models and bird species demonstrate that our approach can effectively transfer fine-detail knowledge to coarse-detail imagery.

* 5 pages, accepted by ICIP 2016 

  Click for Model/Code and Paper
Constrained Structured Regression with Convolutional Neural Networks

Nov 23, 2015
Deepak Pathak, Philipp Krähenbühl, Stella X. Yu, Trevor Darrell

Convolutional Neural Networks (CNNs) have recently emerged as the dominant model in computer vision. If provided with enough training data, they predict almost any visual quantity. In a discrete setting, such as classification, CNNs are not only able to predict a label but often predict a confidence in the form of a probability distribution over the output space. In continuous regression tasks, such a probability estimate is often lacking. We present a regression framework which models the output distribution of neural networks. This output distribution allows us to infer the most likely labeling following a set of physical or modeling constraints. These constraints capture the intricate interplay between different input and output variables, and complement the output of a CNN. However, they may not hold everywhere. Our setup further allows to learn a confidence with which a constraint holds, in the form of a distribution of the constrain satisfaction. We evaluate our approach on the problem of intrinsic image decomposition, and show that constrained structured regression significantly increases the state-of-the-art.

  Click for Model/Code and Paper
Learning Beyond Human Expertise with Generative Models for Dental Restorations

Mar 30, 2018
Jyh-Jing Hwang, Sergei Azernikov, Alexei A. Efros, Stella X. Yu

Computer vision has advanced significantly that many discriminative approaches such as object recognition are now widely used in real applications. We present another exciting development that utilizes generative models for the mass customization of medical products such as dental crowns. In the dental industry, it takes a technician years of training to design synthetic crowns that restore the function and integrity of missing teeth. Each crown must be customized to individual patients, and it requires human expertise in a time-consuming and labor-intensive process, even with computer-assisted design software. We develop a fully automatic approach that learns not only from human designs of dental crowns, but also from natural spatial profiles between opposing teeth. The latter is hard to account for by technicians but important for proper biting and chewing functions. Built upon a Generative Adversar-ial Network architecture (GAN), our deep learning model predicts the customized crown-filled depth scan from the crown-missing depth scan and opposing depth scan. We propose to incorporate additional space constraints and statistical compatibility into learning. Our automatic designs exceed human technicians' standards for good morphology and functionality, and our algorithm is being tested for production use.

  Click for Model/Code and Paper
Am I a Baller? Basketball Performance Assessment from First-Person Videos

Aug 02, 2017
Gedas Bertasius, Hyun Soo Park, Stella X. Yu, Jianbo Shi

This paper presents a method to assess a basketball player's performance from his/her first-person video. A key challenge lies in the fact that the evaluation metric is highly subjective and specific to a particular evaluator. We leverage the first-person camera to address this challenge. The spatiotemporal visual semantics provided by a first-person view allows us to reason about the camera wearer's actions while he/she is participating in an unscripted basketball game. Our method takes a player's first-person video and provides a player's performance measure that is specific to an evaluator's preference. To achieve this goal, we first use a convolutional LSTM network to detect atomic basketball events from first-person videos. Our network's ability to zoom-in to the salient regions addresses the issue of a severe camera wearer's head movement in first-person videos. The detected atomic events are then passed through the Gaussian mixtures to construct a highly non-linear visual spatiotemporal basketball assessment feature. Finally, we use this feature to learn a basketball assessment model from pairs of labeled first-person basketball videos, for which a basketball expert indicates, which of the two players is better. We demonstrate that despite not knowing the basketball evaluator's criterion, our model learns to accurately assess the players in real-world games. Furthermore, our model can also discover basketball events that contribute positively and negatively to a player's performance.

  Click for Model/Code and Paper
Unsupervised Learning of Important Objects from First-Person Videos

Aug 02, 2017
Gedas Bertasius, Hyun Soo Park, Stella X. Yu, Jianbo Shi

A first-person camera, placed at a person's head, captures, which objects are important to the camera wearer. Most prior methods for this task learn to detect such important objects from the manually labeled first-person data in a supervised fashion. However, important objects are strongly related to the camera wearer's internal state such as his intentions and attention, and thus, only the person wearing the camera can provide the importance labels. Such a constraint makes the annotation process costly and limited in scalability. In this work, we show that we can detect important objects in first-person images without the supervision by the camera wearer or even third-person labelers. We formulate an important detection problem as an interplay between the 1) segmentation and 2) recognition agents. The segmentation agent first proposes a possible important object segmentation mask for each image, and then feeds it to the recognition agent, which learns to predict an important object mask using visual semantics and spatial features. We implement such an interplay between both agents via an alternating cross-pathway supervision scheme inside our proposed Visual-Spatial Network (VSN). Our VSN consists of spatial ("where") and visual ("what") pathways, one of which learns common visual semantics while the other focuses on the spatial location cues. Our unsupervised learning is accomplished via a cross-pathway supervision, where one pathway feeds its predictions to a segmentation agent, which proposes a candidate important object segmentation mask that is then used by the other pathway as a supervisory signal. We show our method's success on two different important object datasets, where our method achieves similar or better results as the supervised methods.

  Click for Model/Code and Paper
First Person Action-Object Detection with EgoNet

Jun 10, 2017
Gedas Bertasius, Hyun Soo Park, Stella X. Yu, Jianbo Shi

Unlike traditional third-person cameras mounted on robots, a first-person camera, captures a person's visual sensorimotor object interactions from up close. In this paper, we study the tight interplay between our momentary visual attention and motor action with objects from a first-person camera. We propose a concept of action-objects---the objects that capture person's conscious visual (watching a TV) or tactile (taking a cup) interactions. Action-objects may be task-dependent but since many tasks share common person-object spatial configurations, action-objects exhibit a characteristic 3D spatial distance and orientation with respect to the person. We design a predictive model that detects action-objects using EgoNet, a joint two-stream network that holistically integrates visual appearance (RGB) and 3D spatial layout (depth and height) cues to predict per-pixel likelihood of action-objects. Our network also incorporates a first-person coordinate embedding, which is designed to learn a spatial distribution of the action-objects in the first-person data. We demonstrate EgoNet's predictive power, by showing that it consistently outperforms previous baseline approaches. Furthermore, EgoNet also exhibits a strong generalization ability, i.e., it predicts semantically meaningful objects in novel first-person datasets. Our method's ability to effectively detect action-objects could be used to improve robots' understanding of human-object interactions.

  Click for Model/Code and Paper
Adaptive Affinity Fields for Semantic Segmentation

Aug 21, 2018
Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, Stella X. Yu

Semantic segmentation has made much progress with increasingly powerful pixel-wise classifiers and incorporating structural priors via Conditional Random Fields (CRF) or Generative Adversarial Networks (GAN). We propose a simpler alternative that learns to verify the spatial structure of segmentation during training only. Unlike existing approaches that enforce semantic labels on individual pixels and match labels between neighbouring pixels, we propose the concept of Adaptive Affinity Fields (AAF) to capture and match the semantic relations between neighbouring pixels in the label space. We use adversarial learning to select the optimal affinity field size for each semantic category. It is formulated as a minimax problem, optimizing our segmentation neural network in a best worst-case learning scenario. AAF is versatile for representing structures as a collection of pixel-centric relations, easier to train than GAN and more efficient than CRF without run-time inference. Our extensive evaluations on PASCAL VOC 2012, Cityscapes, and GTA5 datasets demonstrate its above-par segmentation performance and robust generalization across domains.

* To appear in European Conference on Computer Vision (ECCV) 2018 

  Click for Model/Code and Paper
Adversarial Structure Matching Loss for Image Segmentation

May 18, 2018
Jyh-Jing Hwang, Tsung-Wei Ke, Jianbo Shi, Stella X. Yu

The per-pixel cross-entropy loss (CEL) has been widely used in structured output prediction tasks as a spatial extension of generic image classification. However, its i.i.d. assumption neglects the structural regularity present in natural images. Various attempts have been made to incorporate structural reasoning mostly through structure priors in a cooperative way where co-occuring patterns are encouraged. We, on the other hand, approach this problem from an opposing angle and propose a new framework for training such structured prediction networks via an adversarial process, in which we train a structure analyzer that provides the supervisory signals, the adversarial structure matching loss (ASML). The structure analyzer is trained to maximize ASML, or to exaggerate recurring structural mistakes usually among co-occurring patterns. On the contrary, the structured output prediction network is trained to reduce those mistakes and is thus enabled to distinguish fine-grained structures. As a result, training structured output prediction networks using ASML reduces contextual confusion among objects and improves boundary localization. We demonstrate that ASML outperforms its counterpart CEL especially in context and boundary aspects on figure-ground segmentation and semantic segmentation tasks with various base architectures, such as FCN, U-Net, DeepLab, and PSPNet.

  Click for Model/Code and Paper