Research papers and code for "Tao Chen":
Given the ever-increasing complexity of adaptable software systems and their commonly hidden internal information (e.g., software runs in the public cloud), machine learning based performance modeling has gained momentum for evaluating, understanding and predicting software performance, which facilitates better informed self-adaptations. As performance data accumulates during the run of the software, updating the performance models becomes necessary. To this end, there are two conventional modeling methods: the retrained modeling that always discard the old model and retrain a new one using all available data; or the incremental modeling that retains the existing model and tunes it using one newly arrival data sample. Generally, literature on machine learning based performance modeling for adaptable software chooses either of those methods according to a general belief, but they provide insufficient evidences or references to justify their choice. This paper is the first to report on a comprehensive empirical study that examines both modeling methods under distinct domains of adaptable software, 5 performance indicators, 8 learning algorithms and settings, covering a total of 1,360 different conditions. Our findings challenge the general belief, which is shown to be only partially correct, and reveal some of the important, statistically significant factors that are often overlooked in existing work, providing evidence-based insights on the choice.

* preprint of the accepted paper for the 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2019)
Click to Read Paper and Get Code
Recently, discriminatively learned correlation filters (DCF) has drawn much attention in visual object tracking community. The success of DCF is potentially attributed to the fact that a large amount of samples are utilized to train the ridge regression model and predict the location of object. To solve the regression problem in an efficient way, these samples are all generated by circularly shifting from a search patch. However, these synthetic samples also induce some negative effects which weaken the robustness of DCF based trackers. In this paper, we propose a Convolutional Regression framework for visual tracking (CRT). Instead of learning the linear regression model in a closed form, we try to solve the regression problem by optimizing a one-channel-output convolution layer with Gradient Descent (GD). In particular, the receptive field size of the convolution layer is set to the size of object. Contrary to DCF, it is possible to incorporate all "real" samples clipped from the whole image. A critical issue of the GD approach is that most of the convolutional samples are negative and the contribution of positive samples will be suppressed. To address this problem, we propose a novel Automatic Hard Negative Mining method to eliminate easy negatives and enhance positives. Extensive experiments are conducted on a widely-used benchmark with 100 sequences. The results show that the proposed algorithm achieves outstanding performance and outperforms almost all the existing DCF based algorithms.

Click to Read Paper and Get Code
One of the main challenges of visual object tracking comes from the arbitrary appearance of objects. Most existing algorithms try to resolve this problem as an object-specific task, i.e., the model is trained to regenerate or classify a specific object. As a result, the model need to be initialized and retrained for different objects. In this paper, we propose a more generic approach utilizing a novel two-flow convolutional neural network (named YCNN). The YCNN takes two inputs (one is object image patch, the other is search image patch), then outputs a response map which predicts how likely the object appears in a specific location. Unlike those object-specific approach, the YCNN is trained to measure the similarity between two image patches. Thus it will not be confined to any specific object. Furthermore the network can be end-to-end trained to extract both shallow and deep convolutional features which are dedicated for visual tracking. And once properly trained, the YCNN can be applied to track all kinds of objects without further training and updating. Benefiting from the once-for-all model, our algorithm is able to run at a very high speed of 45 frames-per-second. The experiments on 51 sequences also show that our algorithm achieves an outstanding performance.

Click to Read Paper and Get Code
Numerous past works have tackled the problem of task-driven navigation. But, how to effectively explore a new environment to enable a variety of down-stream tasks has received much less attention. In this work, we study how agents can autonomously explore realistic and complex 3D environments without the context of task-rewards. We propose a learning-based approach and investigate different policy architectures, reward functions, and training paradigms. We find that the use of policies with spatial memory that are bootstrapped with imitation learning and finally finetuned with coverage rewards derived purely from on-board sensors can be effective at exploring novel environments. We show that our learned exploration policies can explore better than classical approaches based on geometry alone and generic learning-based exploration techniques. Finally, we also show how such task-agnostic exploration can be used for down-stream tasks. Code and Videos are available at: https://sites.google.com/view/exploration-for-nav.

Click to Read Paper and Get Code
Short Message Service (SMS) messages are largely sent directly from one person to another from their mobile phones. They represent a means of personal communication that is an important communicative artifact in our current digital era. As most existing studies have used private access to SMS corpora, comparative studies using the same raw SMS data has not been possible up to now. We describe our efforts to collect a public SMS corpus to address this problem. We use a battery of methodologies to collect the corpus, paying particular attention to privacy issues to address contributors' concerns. Our live project collects new SMS message submissions, checks their quality and adds the valid messages, releasing the resultant corpus as XML and as SQL dumps, along with corpus statistics, every month. We opportunistically collect as much metadata about the messages and their sender as possible, so as to enable different types of analyses. To date, we have collected about 60,000 messages, focusing on English and Mandarin Chinese.

* Language Resources and Evaluation, Aug 2012
* It contains 31 pages, 6 figures, and 10 tables. It has been submitted to Language Resource and Evaluation Journal
Click to Read Paper and Get Code
In the process of exploring the world, the curiosity constantly drives humans to cognize new things. \emph{Supposing you are a zoologist, for a presented animal image, you can recognize it immediately if you know its class. Otherwise, you would more likely attempt to cognize it by exploiting the side-information (e.g., semantic information, etc.) you have accumulated.} Inspired by this, this paper decomposes the generalized zero-shot learning (G-ZSL) task into an open set recognition (OSR) task and a zero-shot learning (ZSL) task, where OSR recognizes seen classes (if we have seen (or known) them) and rejects unseen classes (if we have never seen (or known) them before), while ZSL identifies the unseen classes rejected by the former. Simultaneously, without violating OSR's assumptions (only known class knowledge is available in training), we also first attempt to explore a new generalized open set recognition (G-OSR) by introducing the accumulated side-information from known classes to OSR. For G-ZSL, such a decomposition essentially solves the class overfitting problem with easily misclassifying unseen classes as seen classes. The problem is ubiquitous in most existing G-ZSL methods. On the other hand, for G-OSR, introducing such semantic information of known classes not only improves the recognition performance but also endows OSR with the cognitive ability of unknown classes. Specifically, a visual and semantic prototypes-jointly guided convolutional neural network (VSG-CNN) is proposed to fulfill these two tasks (G-ZSL and G-OSR) in a unified end-to-end learning framework. Extensive experiments on benchmark datasets demonstrate the advantages of our learning framework.

Click to Read Paper and Get Code
Network embeddings learn to represent nodes as low-dimensional vectors to preserve the proximity between nodes and communities of the network for network analysis. The temporal edges (e.g., relationships, contacts, and emails) in dynamic networks are important for network evolution analysis, but few existing methods in network embeddings can capture the dynamic information from temporal edges. In this paper, we propose a novel dynamic network embedding method to analyze evolution patterns of dynamic networks effectively. Our method uses random walk to keep the proximity between nodes and applies dynamic Bernoulli embeddings to train discrete-time network embeddings in the same vector space without alignments to preserve the temporal continuity of stable nodes. We compare our method with several state-of-the-art methods by link prediction and evolving node detection, and the experiments demonstrate that our method generally has better performance in these tasks. Our method is further verified by two real-world dynamic networks via detecting evolving nodes and visualizing their temporal trajectories in the embedded space.

Click to Read Paper and Get Code
Despite rapid developments in visual image-based road detection, robustly identifying road areas in visual images remains challenging due to issues like illumination changes and blurry images. To this end, LiDAR sensor data can be incorporated to improve the visual image-based road detection, because LiDAR data is less susceptible to visual noises. However, the main difficulty in introducing LiDAR information into visual image-based road detection is that LiDAR data and its extracted features do not share the same space with the visual data and visual features. Such gaps in spaces may limit the benefits of LiDAR information for road detection. To overcome this issue, we introduce a novel Progressive LiDAR Adaptation-aided Road Detection (PLARD) approach to adapt LiDAR information into visual image-based road detection and improve detection performance. In PLARD, progressive LiDAR adaptation consists of two subsequent modules: 1) data space adaptation, which transforms the LiDAR data to the visual data space to align with the perspective view by applying altitude difference-based transformation; and 2) feature space adaptation, which adapts LiDAR features to visual features through a cascaded fusion structure. Comprehensive empirical studies on the well-known KITTI road detection benchmark demonstrate that PLARD takes advantage of both the visual and LiDAR information, achieving much more robust road detection even in challenging urban scenes. In particular, PLARD outperforms other state-of-the-art road detection models and is currently top of the publicly accessible benchmark leader-board.

Click to Read Paper and Get Code
Deep reinforcement learning could be used to learn dexterous robotic policies but it is challenging to transfer them to new robots with vastly different hardware properties. It is also prohibitively expensive to learn a new policy from scratch for each robot hardware due to the high sample complexity of modern state-of-the-art algorithms. We propose a novel approach called \textit{Hardware Conditioned Policies} where we train a universal policy conditioned on a vector representation of robot hardware. We considered robots in simulation with varied dynamics, kinematic structure, kinematic lengths and degrees-of-freedom. First, we use the kinematic structure directly as the hardware encoding and show great zero-shot transfer to completely novel robots not seen during training. For robots with lower zero-shot success rate, we also demonstrate that fine-tuning the policy network is significantly more sample-efficient than training a model from scratch. In tasks where knowing the agent dynamics is important for success, we learn an embedding for robot hardware and show that policies conditioned on the encoding of hardware tend to generalize and transfer well. The code and videos are available on the project webpage: https://sites.google.com/view/robot-transfer-hcp.

Click to Read Paper and Get Code
Mobile edge computing is a new computing paradigm, which pushes cloud computing capabilities away from the centralized cloud to the network edge. However, with the sinking of computing capabilities, the new challenge incurred by user mobility arises: since end-users typically move erratically, the services should be dynamically migrated among multiple edges to maintain the service performance, i.e., user-perceived latency. Tackling this problem is non-trivial since frequent service migration would greatly increase the operational cost. To address this challenge in terms of the performance-cost trade-off, in this paper we study the mobile edge service performance optimization problem under long-term cost budget constraint. To address user mobility which is typically unpredictable, we apply Lyapunov optimization to decompose the long-term optimization problem into a series of real-time optimization problems which do not require a priori knowledge such as user mobility. As the decomposed problem is NP-hard, we first design an approximation algorithm based on Markov approximation to seek a near-optimal solution. To make our solution scalable and amenable to future 5G application scenario with large-scale user devices, we further propose a distributed approximation scheme with greatly reduced time complexity, based on the technique of best response update. Rigorous theoretical analysis and extensive evaluations demonstrate the efficacy of the proposed centralized and distributed schemes.

* The paper is accepted by IEEE Journal on Selected Areas in Communications, Aug. 2018
Click to Read Paper and Get Code
Over these years, Correlation Filter-based Trackers (CFTs) have aroused increasing interests in the field of visual object tracking, and have achieved extremely compelling results in different competitions and benchmarks. In this paper, our goal is to review the developments of CFTs with extensive experimental results. 11 trackers are surveyed in our work, based on which a general framework is summarized. Furthermore, we investigate different training schemes for correlation filters, and also discuss various effective improvements that have been made recently. Comprehensive experiments have been conducted to evaluate the effectiveness and efficiency of the surveyed CFTs, and comparisons have been made with other competing trackers. The experimental results have shown that state-of-art performance, in terms of robustness, speed and accuracy, can be achieved by several recent CFTs, such as MUSTer and SAMF. We find that further improvements for correlation filter-based tracking can be made on estimating scales, applying part-based tracking strategy and cooperating with long-term tracking methods.

* 13 pages, 25 figures
Click to Read Paper and Get Code
Sum-of-norms clustering is a method for assigning $n$ points in $\mathbb{R}^d$ to $K$ clusters, $1\le K\le n$, using convex optimization. Recently, Panahi et al.\ proved that sum-of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction that the number of samples is not too large. The purpose of this note is to lift this restriction, i.e., show that sum-of-norms clustering with equal weights can recover a mixture of Gaussians even as the number of samples tends to infinity. Our proof relies on an interesting characterization of clusters computed by sum-of-norms clustering that was developed inside a proof of the agglomeration conjecture by Chiquet et al. Because we believe this theorem has independent interest, we restate and reprove the Chiquet et al.\ result herein.

Click to Read Paper and Get Code
In this work we study the problem of network morphism, an effective learning scheme to morph a well-trained neural network to a new one with the network function completely preserved. Different from existing work where basic morphing types on the layer level were addressed, we target at the central problem of network morphism at a higher level, i.e., how a convolutional layer can be morphed into an arbitrary module of a neural network. To simplify the representation of a network, we abstract a module as a graph with blobs as vertices and convolutional layers as edges, based on which the morphing process is able to be formulated as a graph transformation problem. Two atomic morphing operations are introduced to compose the graphs, based on which modules are classified into two families, i.e., simple morphable modules and complex modules. We present practical morphing solutions for both of these two families, and prove that any reasonable module can be morphed from a single convolutional layer. Extensive experiments have been conducted based on the state-of-the-art ResNet on benchmark datasets, and the effectiveness of the proposed solution has been verified.

* 12 pages, 6 figures, Under review as a conference paper at ICLR 2017
Click to Read Paper and Get Code
We propose a novel method for approximate inference in Bayesian networks (BNs). The idea is to sample data from a BN, learn a latent tree model (LTM) from the data offline, and when online, make inference with the LTM instead of the original BN. Because LTMs are tree-structured, inference takes linear time. In the meantime, they can represent complex relationship among leaf nodes and hence the approximation accuracy is often good. Empirical evidence shows that our method can achieve good approximation accuracy at low online computational cost.

* Journal Of Artificial Intelligence Research, Volume 32, pages 879-900, 2008
Click to Read Paper and Get Code
This paper investigates energy efficiency for two-tier femtocell networks through combining game theory and stochastic learning. With the Stackelberg game formulation, a hierarchical reinforcement learning framework is applied to study the joint average utility maximization of macrocells and femtocells subject to the minimum signal-to-interference-plus-noise-ratio requirements. The macrocells behave as the leaders and the femtocells are followers during the learning procedure. At each time step, the leaders commit to dynamic strategies based on the best responses of the followers, while the followers compete against each other with no further information but the leaders' strategy information. In this paper, we propose two learning algorithms to schedule each cell's stochastic power levels, leading by the macrocells. Numerical experiments are presented to validate the proposed studies and show that the two learning algorithms substantially improve the energy efficiency of the femtocell networks.

Click to Read Paper and Get Code
Label propagation aims to iteratively diffuse the label information from labeled examples to unlabeled examples over a similarity graph. Current label propagation algorithms cannot consistently yield satisfactory performance due to two reasons: one is the instability of single propagation method in dealing with various practical data, and the other one is the improper propagation sequence ignoring the labeling difficulties of different examples. To remedy above defects, this paper proposes a novel propagation algorithm called hybrid diffusion under ensemble teaching (HyDEnT). Specifically, HyDEnT integrates multiple propagation methods as base learners to fully exploit their individual wisdom, which helps HyDEnT to be stable and obtain consistent encouraging results. More importantly, HyDEnT conducts propagation under the guidance of an ensemble of teachers. That is to say, in every propagation round the simplest curriculum examples are wisely designated by a teaching algorithm, so that their labels can be reliably and accurately decided by the learners. To optimally choose these simplest examples, every teacher in the ensemble should comprehensively consider the examples' difficulties from its own viewpoint, as well as the common knowledge shared by all the teachers. This is accomplished by a designed optimization problem, which can be efficiently solved via the block coordinate descent method. Thanks to the efforts of the teachers, all the unlabeled examples are logically propagated from simple to difficult, leading to better propagation quality of HyDEnT than the existing methods.

Click to Read Paper and Get Code
Practically, we are often in the dilemma that the labeled data at hand are inadequate to train a reliable classifier, and more seriously, some of these labeled data may be mistakenly labeled due to the various human factors. Therefore, this paper proposes a novel semi-supervised learning paradigm that can handle both label insufficiency and label inaccuracy. To address label insufficiency, we use a graph to bridge the data points so that the label information can be propagated from the scarce labeled examples to unlabeled examples along the graph edges. To address label inaccuracy, Graph Trend Filtering (GTF) and Smooth Eigenbase Pursuit (SEP) are adopted to filter out the initial noisy labels. GTF penalizes the l_0 norm of label difference between connected examples in the graph and exhibits better local adaptivity than the traditional l_2 norm-based Laplacian smoother. SEP reconstructs the correct labels by emphasizing the leading eigenvectors of Laplacian matrix associated with small eigenvalues, as these eigenvectors reflect real label smoothness and carry rich class separation cues. We term our algorithm as `Semi-supervised learning under Inadequate and Incorrect Supervision' (SIIS). Thorough experimental results on image classification, text categorization, and speech recognition demonstrate that our SIIS is effective in label error correction, leading to superior performance to the state-of-the-art methods in the presence of label noise and label scarcity.

Click to Read Paper and Get Code
Multi-criteria Chinese word segmentation is a promising but challenging task, which exploits several different segmentation criteria and mines their common underlying knowledge. In this paper, we propose a flexible multi-criteria learning for Chinese word segmentation. Usually, a segmentation criterion could be decomposed into multiple sub-criteria, which are shareable with other segmentation criteria. The process of word segmentation is a routing among these sub-criteria. From this perspective, we present Switch-LSTMs to segment words, which consist of several long short-term memory neural networks (LSTM), and a switcher to automatically switch the routing among these LSTMs. With these auto-switched LSTMs, our model provides a more flexible solution for multi-criteria CWS, which is also easy to transfer the learned knowledge to new criteria. Experiments show that our model obtains significant improvements on eight corpora with heterogeneous segmentation criteria, compared to the previous method and single-criterion learning.

Click to Read Paper and Get Code
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into micro-expression recognition areas. Whilst the higher recognition accuracy achieved with deep learning methods, substantial challenges in micro-expression recognition remain. Issues with the existence of micro expression in small-local areas on face and limited size of databases still constrain the recognition accuracy of such facial behavior. In this work, to tackle such challenges, we propose novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial area of interest (action units). Moreover, coping with small datasets, a simple yet efficient transfer learning approach is utilized to alleviate the overfitting risk. With an extensive experimental evaluation on two benchmarks (CASMEII, SAMM) and post-hoc feature visualizations, we demonstrate the effectiveness of proposed micro-attention and push the boundary of automatic recognition of micro-expression.

* 15 pages, 5 figures, 6 tables
Click to Read Paper and Get Code