Models, code, and papers for "Terrance Boult":

Towards Open Set Deep Networks

Nov 19, 2015
Abhijit Bendale, Terrance Boult

Deep networks have produced significant gains for various visual recognition problems, leading to high impact academic and commercial applications. Recent work in deep networks highlighted that it is easy to generate images that humans would never classify as a particular object class, yet networks classify such images high confidence as that given class - deep network are easily fooled with images humans do not consider meaningful. The closed set nature of deep networks forces them to choose from one of the known classes leading to such artifacts. Recognition in the real world is open set, i.e. the recognition system should reject unknown/unseen classes at test time. We present a methodology to adapt deep networks for open set recognition, by introducing a new model layer, OpenMax, which estimates the probability of an input being from an unknown class. A key element of estimating the unknown probability is adapting Meta-Recognition concepts to the activation patterns in the penultimate layer of the network. OpenMax allows rejection of "fooling" and unrelated open set images presented to the system; OpenMax greatly reduces the number of obvious errors made by a deep network. We prove that the OpenMax concept provides bounded open space risk, thereby formally providing an open set recognition solution. We evaluate the resulting open set deep networks using pre-trained networks from the Caffe Model-zoo on ImageNet 2012 validation data, and thousands of fooling and open set images. The proposed OpenMax model significantly outperforms open set recognition accuracy of basic deep networks as well as deep networks with thresholding of SoftMax probabilities.


  Click for Model/Code and Paper
Towards Open World Recognition

Dec 18, 2014
Abhijit Bendale, Terrance Boult

With the of advent rich classification models and high computational power visual recognition systems have found many operational applications. Recognition in the real world poses multiple challenges that are not apparent in controlled lab environments. The datasets are dynamic and novel categories must be continuously detected and then added. At prediction time, a trained system has to deal with myriad unseen categories. Operational systems require minimum down time, even to learn. To handle these operational issues, we present the problem of Open World recognition and formally define it. We prove that thresholding sums of monotonically decreasing functions of distances in linearly transformed feature space can balance "open space risk" and empirical risk. Our theory extends existing algorithms for open world recognition. We present a protocol for evaluation of open world recognition systems. We present the Nearest Non-Outlier (NNO) algorithm which evolves model efficiently, adding object categories incrementally while detecting outliers and managing open space risk. We perform experiments on the ImageNet dataset with 1.2M+ images to validate the effectiveness of our method on large scale visual recognition tasks. NNO consistently yields superior results on open world recognition.

* IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015) 1893 - 1902 

  Click for Model/Code and Paper
Improved Adversarial Robustness by Reducing Open Space Risk via Tent Activations

Aug 07, 2019
Andras Rozsa, Terrance E. Boult

Adversarial examples contain small perturbations that can remain imperceptible to human observers but alter the behavior of even the best performing deep learning models and yield incorrect outputs. Since their discovery, adversarial examples have drawn significant attention in machine learning: researchers try to reveal the reasons for their existence and improve the robustness of machine learning models to adversarial perturbations. The state-of-the-art defense is the computationally expensive and very time consuming adversarial training via projected gradient descent (PGD). We hypothesize that adversarial attacks exploit the open space risk of classic monotonic activation functions. This paper introduces the tent activation function with bounded open space risk and shows that tents make deep learning models more robust to adversarial attacks. We demonstrate on the MNIST dataset that a classifier with tents yields an average accuracy of 91.8% against six white-box adversarial attacks, which is more than 15 percentage points above the state of the art. On the CIFAR-10 dataset, our approach improves the average accuracy against the six white-box adversarial attacks to 73.5% from 41.8% achieved by adversarial training via PGD.


  Click for Model/Code and Paper
Pruning Bayesian Networks for Efficient Computation

Mar 27, 2013
Michelle Baker, Terrance E. Boult

This paper analyzes the circumstances under which Bayesian networks can be pruned in order to reduce computational complexity without altering the computation for variables of interest. Given a problem instance which consists of a query and evidence for a set of nodes in the network, it is possible to delete portions of the network which do not participate in the computation for the query. Savings in computational complexity can be large when the original network is not singly connected. Results analogous to those described in this paper have been derived before [Geiger, Verma, and Pearl 89, Shachter 88] but the implications for reducing complexity of the computations in Bayesian networks have not been stated explicitly. We show how a preprocessing step can be used to prune a Bayesian network prior to using standard algorithms to solve a given problem instance. We also show how our results can be used in a parallel distributed implementation in order to achieve greater savings. We define a computationally equivalent subgraph of a Bayesian network. The algorithm developed in [Geiger, Verma, and Pearl 89] is modified to construct the subgraphs described in this paper with O(e) complexity, where e is the number of edges in the Bayesian network. Finally, we define a minimal computationally equivalent subgraph and prove that the subgraphs described are minimal.

* Appears in Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence (UAI1990) 

  Click for Model/Code and Paper
MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

Oct 21, 2016
Ethan Rudd, Manuel Günther, Terrance Boult

Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.

* Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_2 

  Click for Model/Code and Paper
LOTS about Attacking Deep Features

May 31, 2018
Andras Rozsa, Manuel Günther, Terrance E. Boult

Deep neural networks provide state-of-the-art performance on various tasks and are, therefore, widely used in real world applications. DNNs are becoming frequently utilized in biometrics for extracting deep features, which can be used in recognition systems for enrolling and recognizing new individuals. It was revealed that deep neural networks suffer from a fundamental problem, namely, they can unexpectedly misclassify examples formed by slightly perturbing correctly recognized inputs. Various approaches have been developed for generating these so-called adversarial examples, but they aim at attacking end-to-end networks. For biometrics, it is natural to ask whether systems using deep features are immune to or, at least, more resilient to attacks than end-to-end networks. In this paper, we introduce a general technique called the layerwise origin-target synthesis (LOTS) that can be efficiently used to form adversarial examples that mimic the deep features of the target. We analyze and compare the adversarial robustness of the end-to-end VGG Face network with systems that use Euclidean or cosine distance between gallery templates and extracted deep features. We demonstrate that iterative LOTS is very effective and show that systems utilizing deep features are easier to attack than the end-to-end network.

* Accepted to the International Joint Conference on Biometrics (IJCB) 2017 

  Click for Model/Code and Paper
Towards Robust Deep Neural Networks with BANG

Jan 30, 2018
Andras Rozsa, Manuel Gunther, Terrance E. Boult

Machine learning models, including state-of-the-art deep neural networks, are vulnerable to small perturbations that cause unexpected classification errors. This unexpected lack of robustness raises fundamental questions about their generalization properties and poses a serious concern for practical deployments. As such perturbations can remain imperceptible - the formed adversarial examples demonstrate an inherent inconsistency between vulnerable machine learning models and human perception - some prior work casts this problem as a security issue. Despite the significance of the discovered instabilities and ensuing research, their cause is not well understood and no effective method has been developed to address the problem. In this paper, we present a novel theory to explain why this unpleasant phenomenon exists in deep neural networks. Based on that theory, we introduce a simple, efficient, and effective training approach, Batch Adjusted Network Gradients (BANG), which significantly improves the robustness of machine learning models. While the BANG technique does not rely on any form of data augmentation or the utilization of adversarial images for training, the resultant classifiers are more resistant to adversarial perturbations while maintaining or even enhancing the overall classification performance.

* Accepted to the IEEE Winter Conference on Applications of Computer Vision (WACV), 2018 

  Click for Model/Code and Paper
Adversarial Robustness: Softmax versus Openmax

Aug 05, 2017
Andras Rozsa, Manuel Günther, Terrance E. Boult

Deep neural networks (DNNs) provide state-of-the-art results on various tasks and are widely used in real world applications. However, it was discovered that machine learning models, including the best performing DNNs, suffer from a fundamental problem: they can unexpectedly and confidently misclassify examples formed by slightly perturbing otherwise correctly recognized inputs. Various approaches have been developed for efficiently generating these so-called adversarial examples, but those mostly rely on ascending the gradient of loss. In this paper, we introduce the novel logits optimized targeting system (LOTS) to directly manipulate deep features captured at the penultimate layer. Using LOTS, we analyze and compare the adversarial robustness of DNNs using the traditional Softmax layer with Openmax, which was designed to provide open set recognition by defining classes derived from deep representations, and is claimed to be more robust to adversarial perturbations. We demonstrate that Openmax provides less vulnerable systems than Softmax to traditional attacks, however, we show that it can be equally susceptible to more sophisticated adversarial generation techniques that directly work on deep representations.

* Accepted to British Machine Vision Conference (BMVC) 2017 

  Click for Model/Code and Paper
AFFACT - Alignment-Free Facial Attribute Classification Technique

Aug 04, 2017
Manuel Günther, Andras Rozsa, Terrance E. Boult

Facial attributes are soft-biometrics that allow limiting the search space, e.g., by rejecting identities with non-matching facial characteristics such as nose sizes or eyebrow shapes. In this paper, we investigate how the latest versions of deep convolutional neural networks, ResNets, perform on the facial attribute classification task. We test two loss functions: the sigmoid cross-entropy loss and the Euclidean loss, and find that for classification performance there is little difference between these two. Using an ensemble of three ResNets, we obtain the new state-of-the-art facial attribute classification error of 8.00% on the aligned images of the CelebA dataset. More significantly, we introduce the Alignment-Free Facial Attribute Classification Technique (AFFACT), a data augmentation technique that allows a network to classify facial attributes without requiring alignment beyond detected face bounding boxes. To our best knowledge, we are the first to report similar accuracy when using only the detected bounding boxes -- rather than requiring alignment based on automatically detected facial landmarks -- and who can improve classification accuracy with rotating and scaling test images. We show that this approach outperforms the CelebA baseline on unaligned images with a relative improvement of 36.8%.

* This is a pre-print of the original paper accepted for oral presentation at the International Joint Conference on Biometrics (IJCB) 2017 

  Click for Model/Code and Paper
Are Accuracy and Robustness Correlated?

Dec 01, 2016
Andras Rozsa, Manuel Günther, Terrance E. Boult

Machine learning models are vulnerable to adversarial examples formed by applying small carefully chosen perturbations to inputs that cause unexpected classification errors. In this paper, we perform experiments on various adversarial example generation approaches with multiple deep convolutional neural networks including Residual Networks, the best performing models on ImageNet Large-Scale Visual Recognition Challenge 2015. We compare the adversarial example generation techniques with respect to the quality of the produced images, and measure the robustness of the tested machine learning models to adversarial examples. Finally, we conduct large-scale experiments on cross-model adversarial portability. We find that adversarial examples are mostly transferable across similar network topologies, and we demonstrate that better machine learning models are less vulnerable to adversarial examples.

* Accepted for publication at ICMLA 2016 

  Click for Model/Code and Paper
Assessing Threat of Adversarial Examples on Deep Neural Networks

Oct 13, 2016
Abigail Graese, Andras Rozsa, Terrance E. Boult

Deep neural networks are facing a potential security threat from adversarial examples, inputs that look normal but cause an incorrect classification by the deep neural network. For example, the proposed threat could result in hand-written digits on a scanned check being incorrectly classified but looking normal when humans see them. This research assesses the extent to which adversarial examples pose a security threat, when one considers the normal image acquisition process. This process is mimicked by simulating the transformations that normally occur in acquiring the image in a real world application, such as using a scanner to acquire digits for a check amount or using a camera in an autonomous car. These small transformations negate the effect of the carefully crafted perturbations of adversarial examples, resulting in a correct classification by the deep neural network. Thus just acquiring the image decreases the potential impact of the proposed security threat. We also show that the already widely used process of averaging over multiple crops neutralizes most adversarial examples. Normal preprocessing, such as text binarization, almost completely neutralizes adversarial examples. This is the first paper to show that for text driven classification, adversarial examples are an academic curiosity, not a security threat.

* This is a pre-print version to appear in IEEE ICMLA 2016 

  Click for Model/Code and Paper
Reducing Network Agnostophobia

Nov 09, 2018
Akshay Raj Dhamija, Manuel Günther, Terrance E. Boult

Agnostophobia, the fear of the unknown, can be experienced by deep learning engineers while applying their networks to real-world applications. Unfortunately, network behavior is not well defined for inputs far from a networks training set. In an uncontrolled environment, networks face many instances that are not of interest to them and have to be rejected in order to avoid a false positive. This problem has previously been tackled by researchers by either a) thresholding softmax, which by construction cannot return "none of the known classes", or b) using an additional background or garbage class. In this paper, we show that both of these approaches help, but are generally insufficient when previously unseen classes are encountered. We also introduce a new evaluation metric that focuses on comparing the performance of multiple approaches in scenarios where such unseen classes or unknowns are encountered. Our major contributions are simple yet effective Entropic Open-Set and Objectosphere losses that train networks using negative samples from some classes. These novel losses are designed to maximize entropy for unknown inputs while increasing separation in deep feature space by modifying magnitudes of known and unknown samples. Experiments on networks trained to classify classes from MNIST and CIFAR-10 show that our novel loss functions are significantly better at dealing with unknown inputs from datasets such as Devanagari, NotMNIST, CIFAR-100, and SVHN.

* Neural Information Processing Systems (NIPS) 2018 

  Click for Model/Code and Paper
Adversarial Diversity and Hard Positive Generation

May 17, 2016
Andras Rozsa, Ethan M. Rudd, Terrance E. Boult

State-of-the-art deep neural networks suffer from a fundamental problem - they misclassify adversarial examples formed by applying small perturbations to inputs. In this paper, we present a new psychometric perceptual adversarial similarity score (PASS) measure for quantifying adversarial images, introduce the notion of hard positive generation, and use a diverse set of adversarial perturbations - not just the closest ones - for data augmentation. We introduce a novel hot/cold approach for adversarial example generation, which provides multiple possible adversarial perturbations for every single image. The perturbations generated by our novel approach often correspond to semantically meaningful image structures, and allow greater flexibility to scale perturbation-amplitudes, which yields an increased diversity of adversarial images. We present adversarial images on several network topologies and datasets, including LeNet on the MNIST dataset, and GoogLeNet and ResidualNet on the ImageNet dataset. Finally, we demonstrate on LeNet and GoogLeNet that fine-tuning with a diverse set of hard positives improves the robustness of these networks compared to training with prior methods of generating adversarial images.

* Accepted to CVPR 2016 DeepVision Workshop 

  Click for Model/Code and Paper
PARAPH: Presentation Attack Rejection by Analyzing Polarization Hypotheses

May 10, 2016
Ethan M. Rudd, Manuel Gunther, Terrance E. Boult

For applications such as airport border control, biometric technologies that can process many capture subjects quickly, efficiently, with weak supervision, and with minimal discomfort are desirable. Facial recognition is particularly appealing because it is minimally invasive yet offers relatively good recognition performance. Unfortunately, the combination of weak supervision and minimal invasiveness makes even highly accurate facial recognition systems susceptible to spoofing via presentation attacks. Thus, there is great demand for an effective and low cost system capable of rejecting such attacks.To this end we introduce PARAPH -- a novel hardware extension that exploits different measurements of light polarization to yield an image space in which presentation media are readily discernible from Bona Fide facial characteristics. The PARAPH system is inexpensive with an added cost of less than 10 US dollars. The system makes two polarization measurements in rapid succession, allowing them to be approximately pixel-aligned, with a frame rate limited by the camera, not the system. There are no moving parts above the molecular level, due to the efficient use of twisted nematic liquid crystals. We present evaluation images using three presentation attack media next to an actual face -- high quality photos on glossy and matte paper and a video of the face on an LCD. In each case, the actual face in the image generated by PARAPH is structurally discernible from the presentations, which appear either as noise (print attacks) or saturated images (replay attacks).

* Accepted to CVPR 2016 Biometrics Workshop 

  Click for Model/Code and Paper
SpliceRadar: A Learned Method For Blind Image Forensics

Jun 27, 2019
Aurobrata Ghosh, Zheng Zhong, Terrance E Boult, Maneesh Singh

Detection and localization of image manipulations like splices are gaining in importance with the easy accessibility of image editing softwares. While detection generates a verdict for an image it provides no insight into the manipulation. Localization helps explain a positive detection by identifying the pixels of the image which have been tampered. We propose a deep learning based method for splice localization without prior knowledge of a test image's camera-model. It comprises a novel approach for learning rich filters and for suppressing image-edges. Additionally, we train our model on a surrogate task of camera model identification, which allows us to leverage large and widely available, unmanipulated, camera-tagged image databases. During inference, we assume that the spliced and host regions come from different camera-models and we segment these regions using a Gaussian-mixture model. Experiments on three test databases demonstrate results on par with and above the state-of-the-art and a good generalization ability to unknown datasets.

* CVPR 2019, Workshop on Media Forensics, 8 pages 

  Click for Model/Code and Paper
Good Recognition is Non-Metric

Feb 19, 2013
Walter J. Scheirer, Michael J. Wilber, Michael Eckmann, Terrance E. Boult

Recognition is the fundamental task of visual cognition, yet how to formalize the general recognition problem for computer vision remains an open issue. The problem is sometimes reduced to the simplest case of recognizing matching pairs, often structured to allow for metric constraints. However, visual recognition is broader than just pair matching -- especially when we consider multi-class training data and large sets of features in a learning context. What we learn and how we learn it has important implications for effective algorithms. In this paper, we reconsider the assumption of recognition as a pair matching test, and introduce a new formal definition that captures the broader context of the problem. Through a meta-analysis and an experimental assessment of the top algorithms on popular data sets, we gain a sense of how often metric properties are violated by good recognition algorithms. By studying these violations, useful insights come to light: we make the case that locally metric algorithms should leverage outside information to solve the general recognition problem.

* 9 pages, 5 figures 

  Click for Model/Code and Paper
Secure voice based authentication for mobile devices: Vaulted Voice Verification

Nov 30, 2012
R. C. Johnson, Walter J. Scheirer, Terrance E. Boult

As the use of biometrics becomes more wide-spread, the privacy concerns that stem from the use of biometrics are becoming more apparent. As the usage of mobile devices grows, so does the desire to implement biometric identification into such devices. A large majority of mobile devices being used are mobile phones. While work is being done to implement different types of biometrics into mobile phones, such as photo based biometrics, voice is a more natural choice. The idea of voice as a biometric identifier has been around a long time. One of the major concerns with using voice as an identifier is the instability of voice. We have developed a protocol that addresses those instabilities and preserves privacy. This paper describes a novel protocol that allows a user to authenticate using voice on a mobile/remote device without compromising their privacy. We first discuss the \vv protocol, which has recently been introduced in research literature, and then describe its limitations. We then introduce a novel adaptation and extension of the vaulted verification protocol to voice, dubbed $V^3$. Following that we show a performance evaluation and then conclude with a discussion of security and future work.


  Click for Model/Code and Paper
Neural Generative Models for 3D Faces with Application in 3D Texture Free Face Recognition

Nov 11, 2018
Ahmed ElSayed, Elif Kongar, Ausif Mahmood, Tarek Sobh, Terrance Boult

Using heterogeneous depth cameras and 3D scanners in 3D face verification causes variations in the resolution of the 3D point clouds. To solve this issue, previous studies use 3D registration techniques. Out of these proposed techniques, detecting points of correspondence is proven to be an efficient method given that the data belongs to the same individual. However, if the data belongs to different persons, the registration algorithms can convert the 3D point cloud of one person to another, destroying the distinguishing features between the two point clouds. Another issue regarding the storage size of the point clouds. That is, if the captured depth image contains around 50 thousand points in the cloud for a single pose for one individual, then the storage size of the entire dataset will be in order of giga if not tera bytes. With these motivations, this work introduces a new technique for 3D point clouds generation using a neural modeling system to handle the differences caused by heterogeneous depth cameras, and to generate a new face canonical compact representation. The proposed system reduces the stored 3D dataset size, and if required, provides an accurate dataset regeneration. Furthermore, the system generates neural models for all gallery point clouds and stores these models to represent the faces in the recognition or verification processes. For the probe cloud to be verified, a new model is generated specifically for that particular cloud and is matched against pre-stored gallery model presentations to identify the query cloud. This work also introduces the utilization of Siamese deep neural network in 3D face verification using generated model representations as raw data for the deep network, and shows that the accuracy of the trained network is comparable all published results on Bosphorus dataset.


  Click for Model/Code and Paper
Facial Attributes: Accuracy and Adversarial Robustness

Apr 20, 2018
Andras Rozsa, Manuel Günther, Ethan M. Rudd, Terrance E. Boult

Facial attributes, emerging soft biometrics, must be automatically and reliably extracted from images in order to be usable in stand-alone systems. While recent methods extract facial attributes using deep neural networks (DNNs) trained on labeled facial attribute data, the robustness of deep attribute representations has not been evaluated. In this paper, we examine the representational stability of several approaches that recently advanced the state of the art on the CelebA benchmark by generating adversarial examples formed by adding small, non-random perturbations to inputs yielding altered classifications. We show that our fast flipping attribute (FFA) technique generates more adversarial examples than traditional algorithms, and that the adversarial robustness of DNNs varies highly between facial attributes. We also test the correlation of facial attributes and find that only for related attributes do the formed adversarial perturbations change the classification of others. Finally, we introduce the concept of natural adversarial samples, i.e., misclassified images where predictions can be corrected via small perturbations. We demonstrate that natural adversarial samples commonly occur and show that many of these images remain misclassified even with additional training epochs, even though their correct classification may require only a small adjustment to network parameters.

* Pattern Recognition Letters, 2017, ISSN 0167-8655 
* arXiv admin note: text overlap with arXiv:1605.05411 

  Click for Model/Code and Paper
Toward Open-Set Face Recognition

May 19, 2017
Manuel Günther, Steve Cruz, Ethan M. Rudd, Terrance E. Boult

Much research has been conducted on both face identification and face verification, with greater focus on the latter. Research on face identification has mostly focused on using closed-set protocols, which assume that all probe images used in evaluation contain identities of subjects that are enrolled in the gallery. Real systems, however, where only a fraction of probe sample identities are enrolled in the gallery, cannot make this closed-set assumption. Instead, they must assume an open set of probe samples and be able to reject/ignore those that correspond to unknown identities. In this paper, we address the widespread misconception that thresholding verification-like scores is a good way to solve the open-set face identification problem, by formulating an open-set face identification protocol and evaluating different strategies for assessing similarity. Our open-set identification protocol is based on the canonical labeled faces in the wild (LFW) dataset. Additionally to the known identities, we introduce the concepts of known unknowns (known, but uninteresting persons) and unknown unknowns (people never seen before) to the biometric community. We compare three algorithms for assessing similarity in a deep feature space under an open-set protocol: thresholded verification-like scores, linear discriminant analysis (LDA) scores, and an extreme value machine (EVM) probabilities. Our findings suggest that thresholding EVM probabilities, which are open-set by design, outperforms thresholding verification-like scores.

* Accepted for Publication in CVPR 2017 Biometrics Workshop 

  Click for Model/Code and Paper