Models, code, and papers for "Tie-Yan Liu":

Representation Degeneration Problem in Training Natural Language Generation Models

Jul 28, 2019
Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, Tie-Yan Liu

We study an interesting problem in training neural network-based models for natural language generation tasks, which we call the \emph{representation degeneration problem}. We observe that when training a model for natural language generation tasks through likelihood maximization with the weight tying trick, especially with big training datasets, most of the learnt word embeddings tend to degenerate and be distributed into a narrow cone, which largely limits the representation power of word embeddings. We analyze the conditions and causes of this problem and propose a novel regularization method to address it. Experiments on language modeling and machine translation show that our method can largely mitigate the representation degeneration problem and achieve better performance than baseline algorithms.

* ICLR 2019 

  Click for Model/Code and Paper
Beyond Exponentially Discounted Sum: Automatic Learning of Return Function

May 28, 2019
Yufei Wang, Qiwei Ye, Tie-Yan Liu

In reinforcement learning, Return, which is the weighted accumulated future rewards, and Value, which is the expected return, serve as the objective that guides the learning of the policy. In classic RL, return is defined as the exponentially discounted sum of future rewards. One key insight is that there could be many feasible ways to define the form of the return function (and thus the value), from which the same optimal policy can be derived, yet these different forms might render dramatically different speeds of learning this policy. In this paper, we research how to modify the form of the return function to enhance the learning towards the optimal policy. We propose to use a general mathematical form for return function, and employ meta-learning to learn the optimal return function in an end-to-end manner. We test our methods on a specially designed maze environment and several Atari games, and our experimental results clearly indicate the advantages of automatically learning optimal return functions in reinforcement learning.

  Click for Model/Code and Paper
Learning Efficient and Effective Exploration Policies with Counterfactual Meta Policy

May 28, 2019
Ruihan Yang, Qiwei Ye, Tie-Yan Liu

A fundamental issue in reinforcement learning algorithms is the balance between exploration of the environment and exploitation of information already obtained by the agent. Especially, exploration has played a critical role for both efficiency and efficacy of the learning process. However, Existing works for exploration involve task-agnostic design, that is performing well in one environment, but be ill-suited to another. To the purpose of learning an effective and efficient exploration policy in an automated manner. We formalized a feasible metric for measuring the utility of exploration based on counterfactual ideology. Based on that, We proposed an end-to-end algorithm to learn exploration policy by meta-learning. We demonstrate that our method achieves good results compared to previous works in the high-dimensional control tasks in MuJoCo simulator.

  Click for Model/Code and Paper
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation

Feb 27, 2018
Huishuai Zhang, Wei Chen, Tie-Yan Liu

Stochastic gradient descent (SGD) has achieved great success in training deep neural network, where the gradient is computed through back-propagation. However, the back-propagated values of different layers vary dramatically. This inconsistence of gradient magnitude across different layers renders optimization of deep neural network with a single learning rate problematic. We introduce the back-matching propagation which computes the backward values on the layer's parameter and the input by matching backward values on the layer's output. This leads to solving a bunch of least-squares problems, which requires high computational cost. We then reduce the back-matching propagation with approximations and propose an algorithm that turns to be the regular SGD with a layer-wise adaptive learning rate strategy. This allows an easy implementation of our algorithm in current machine learning frameworks equipped with auto-differentiation. We apply our algorithm in training modern deep neural networks and achieve favorable results over SGD.

* 12 pages, 3 figures 

  Click for Model/Code and Paper
Word-Entity Duet Representations for Document Ranking

Jun 20, 2017
Chenyan Xiong, Jamie Callan, Tie-Yan Liu

This paper presents a word-entity duet framework for utilizing knowledge bases in ad-hoc retrieval. In this work, the query and documents are modeled by word-based representations and entity-based representations. Ranking features are generated by the interactions between the two representations, incorporating information from the word space, the entity space, and the cross-space connections through the knowledge graph. To handle the uncertainties from the automatically constructed entity representations, an attention-based ranking model AttR-Duet is developed. With back-propagation from ranking labels, the model learns simultaneously how to demote noisy entities and how to rank documents with the word-entity duet. Evaluation results on TREC Web Track ad-hoc task demonstrate that all of the four-way interactions in the duet are useful, the attention mechanism successfully steers the model away from noisy entities, and together they significantly outperform both word-based and entity-based learning to rank systems.

* SIGIR 2017 

  Click for Model/Code and Paper
WordRep: A Benchmark for Research on Learning Word Representations

Jul 07, 2014
Bin Gao, Jiang Bian, Tie-Yan Liu

WordRep is a benchmark collection for the research on learning distributed word representations (or word embeddings), released by Microsoft Research. In this paper, we describe the details of the WordRep collection and show how to use it in different types of machine learning research related to word embedding. Specifically, we describe how the evaluation tasks in WordRep are selected, how the data are sampled, and how the evaluation tool is built. We then compare several state-of-the-art word representations on WordRep, report their evaluation performance, and make discussions on the results. After that, we discuss new potential research topics that can be supported by WordRep, in addition to algorithm comparison. We hope that this paper can help people gain deeper understanding of WordRep, and enable more interesting research on learning distributed word representations and related topics.

  Click for Model/Code and Paper
Adaptive Regret of Convex and Smooth Functions

May 09, 2019
Lijun Zhang, Tie-Yan Liu, Zhi-Hua Zhou

We investigate online convex optimization in changing environments, and choose the adaptive regret as the performance measure. The goal is to achieve a small regret over every interval so that the comparator is allowed to change over time. Different from previous works that only utilize the convexity condition, this paper further exploits smoothness to improve the adaptive regret. To this end, we develop novel adaptive algorithms for convex and smooth functions, and establish problem-dependent regret bounds over any interval. Our regret bounds are comparable to existing results in the worst case, and become much tighter when the comparator has a small loss.

  Click for Model/Code and Paper
Towards Better Text Understanding and Retrieval through Kernel Entity Salience Modeling

May 03, 2018
Chenyan Xiong, Zhengzhong Liu, Jamie Callan, Tie-Yan Liu

This paper presents a Kernel Entity Salience Model (KESM) that improves text understanding and retrieval by better estimating entity salience (importance) in documents. KESM represents entities by knowledge enriched distributed representations, models the interactions between entities and words by kernels, and combines the kernel scores to estimate entity salience. The whole model is learned end-to-end using entity salience labels. The salience model also improves ad hoc search accuracy, providing effective ranking features by modeling the salience of query entities in candidate documents. Our experiments on two entity salience corpora and two TREC ad hoc search datasets demonstrate the effectiveness of KESM over frequency-based and feature-based methods. We also provide examples showing how KESM conveys its text understanding ability learned from entity salience to search.

* In proceedings of SIGIR 2018 

  Click for Model/Code and Paper
Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves

Apr 08, 2016
Fei Tian, Bin Gao, Di He, Tie-Yan Liu

We propose Sentence Level Recurrent Topic Model (SLRTM), a new topic model that assumes the generation of each word within a sentence to depend on both the topic of the sentence and the whole history of its preceding words in the sentence. Different from conventional topic models that largely ignore the sequential order of words or their topic coherence, SLRTM gives full characterization to them by using a Recurrent Neural Networks (RNN) based framework. Experimental results have shown that SLRTM outperforms several strong baselines on various tasks. Furthermore, SLRTM can automatically generate sentences given a topic (i.e., topics to sentences), which is a key technology for real world applications such as personalized short text conversation.

* The submitted version was done in Feb.2016. Still in improvement 

  Click for Model/Code and Paper
A Game-theoretic Machine Learning Approach for Revenue Maximization in Sponsored Search

Jun 04, 2014
Di He, Wei Chen, Liwei Wang, Tie-Yan Liu

Sponsored search is an important monetization channel for search engines, in which an auction mechanism is used to select the ads shown to users and determine the prices charged from advertisers. There have been several pieces of work in the literature that investigate how to design an auction mechanism in order to optimize the revenue of the search engine. However, due to some unrealistic assumptions used, the practical values of these studies are not very clear. In this paper, we propose a novel \emph{game-theoretic machine learning} approach, which naturally combines machine learning and game theory, and learns the auction mechanism using a bilevel optimization framework. In particular, we first learn a Markov model from historical data to describe how advertisers change their bids in response to an auction mechanism, and then for any given auction mechanism, we use the learnt model to predict its corresponding future bid sequences. Next we learn the auction mechanism through empirical revenue maximization on the predicted bid sequences. We show that the empirical revenue will converge when the prediction period approaches infinity, and a Genetic Programming algorithm can effectively optimize this empirical revenue. Our experiments indicate that the proposed approach is able to produce a much more effective auction mechanism than several baselines.

* Twenty-third International Conference on Artificial Intelligence (IJCAI 2013) 

  Click for Model/Code and Paper
Training Over-parameterized Deep ResNet Is almost as Easy as Training a Two-layer Network

Mar 17, 2019
Huishuai Zhang, Da Yu, Wei Chen, Tie-Yan Liu

It has been proved that gradient descent converges linearly to the global minima for training deep neural network in the over-parameterized regime. However, according to \citet{allen2018convergence}, the width of each layer should grow at least with the polynomial of the depth (the number of layers) for residual network (ResNet) in order to guarantee the linear convergence of gradient descent, which shows no obvious advantage over feedforward network. In this paper, we successfully remove the dependence of the width on the depth of the network for ResNet and reach a conclusion that training deep residual network can be as easy as training a two-layer network. This theoretically justifies the benefit of skip connection in terms of facilitating the convergence of gradient descent. Our experiments also justify that the width of ResNet to guarantee successful training is much smaller than that of deep feedforward neural network.

* 33 pages, 5 figures 

  Click for Model/Code and Paper
Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction

Mar 16, 2018
Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, Tie-Yan Liu

Stock trend prediction plays a critical role in seeking maximized profit from stock investment. However, precise trend prediction is very difficult since the highly volatile and non-stationary nature of stock market. Exploding information on Internet together with advancing development of natural language processing and text mining techniques have enable investors to unveil market trends and volatility from online content. Unfortunately, the quality, trustworthiness and comprehensiveness of online content related to stock market varies drastically, and a large portion consists of the low-quality news, comments, or even rumors. To address this challenge, we imitate the learning process of human beings facing such chaotic online news, driven by three principles: sequential content dependency, diverse influence, and effective and efficient learning. In this paper, to capture the first two principles, we designed a Hybrid Attention Networks to predict the stock trend based on the sequence of recent related news. Moreover, we apply the self-paced learning mechanism to imitate the third principle. Extensive experiments on real-world stock market data demonstrate the effectiveness of our approach.

* (1) The MSRA(the organization of the author) planned to apply the patent for this technology, and this paper didn't include the corresponding acknowledge, so we need to withdraw it for a while. (2) The experiment details are not complete and may be confusing to readers, we need to refine the details to avoid unnecessary trouble to readers 

  Click for Model/Code and Paper
Reinforcement Learning for Learning Rate Control

May 31, 2017
Chang Xu, Tao Qin, Gang Wang, Tie-Yan Liu

Stochastic gradient descent (SGD), which updates the model parameters by adding a local gradient times a learning rate at each step, is widely used in model training of machine learning algorithms such as neural networks. It is observed that the models trained by SGD are sensitive to learning rates and good learning rates are problem specific. We propose an algorithm to automatically learn learning rates using neural network based actor-critic methods from deep reinforcement learning (RL).In particular, we train a policy network called actor to decide the learning rate at each step during training, and a value network called critic to give feedback about quality of the decision (e.g., the goodness of the learning rate outputted by the actor) that the actor made. The introduction of auxiliary actor and critic networks helps the main network achieve better performance. Experiments on different datasets and network architectures show that our approach leads to better convergence of SGD than human-designed competitors.

* 7 pages, 9 figures 

  Click for Model/Code and Paper
LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

Oct 31, 2016
Xiang Li, Tao Qin, Jian Yang, Tie-Yan Liu

Recurrent neural networks (RNNs) have achieved state-of-the-art performances in many natural language processing tasks, such as language modeling and machine translation. However, when the vocabulary is large, the RNN model will become very big (e.g., possibly beyond the memory capacity of a GPU device) and its training will become very inefficient. In this work, we propose a novel technique to tackle this challenge. The key idea is to use 2-Component (2C) shared embedding for word representations. We allocate every word in the vocabulary into a table, each row of which is associated with a vector, and each column associated with another vector. Depending on its position in the table, a word is jointly represented by two components: a row vector and a column vector. Since the words in the same row share the row vector and the words in the same column share the column vector, we only need $2 \sqrt{|V|}$ vectors to represent a vocabulary of $|V|$ unique words, which are far less than the $|V|$ vectors required by existing approaches. Based on the 2-Component shared embedding, we design a new RNN algorithm and evaluate it using the language modeling task on several benchmark datasets. The results show that our algorithm significantly reduces the model size and speeds up the training process, without sacrifice of accuracy (it achieves similar, if not better, perplexity as compared to state-of-the-art language models). Remarkably, on the One-Billion-Word benchmark Dataset, our algorithm achieves comparable perplexity to previous language models, whilst reducing the model size by a factor of 40-100, and speeding up the training process by a factor of 2. We name our proposed algorithm \emph{LightRNN} to reflect its very small model size and very high training speed.

* NIPS 2016 

  Click for Model/Code and Paper
Learning Better Word Embedding by Asymmetric Low-Rank Projection of Knowledge Graph

Jun 14, 2015
Fei Tian, Bin Gao, Enhong Chen, Tie-Yan Liu

Word embedding, which refers to low-dimensional dense vector representations of natural words, has demonstrated its power in many natural language processing tasks. However, it may suffer from the inaccurate and incomplete information contained in the free text corpus as training data. To tackle this challenge, there have been quite a few works that leverage knowledge graphs as an additional information source to improve the quality of word embedding. Although these works have achieved certain success, they have neglected some important facts about knowledge graphs: (i) many relationships in knowledge graphs are \emph{many-to-one}, \emph{one-to-many} or even \emph{many-to-many}, rather than simply \emph{one-to-one}; (ii) most head entities and tail entities in knowledge graphs come from very different semantic spaces. To address these issues, in this paper, we propose a new algorithm named ProjectNet. ProjecNet models the relationships between head and tail entities after transforming them with different low-rank projection matrices. The low-rank projection can allow non \emph{one-to-one} relationships between entities, while different projection matrices for head and tail entities allow them to originate in different semantic spaces. The experimental results demonstrate that ProjectNet yields more accurate word embedding than previous works, thus leads to clear improvements in various natural language processing tasks.

  Click for Model/Code and Paper
Modeling Local Dependence in Natural Language with Multi-channel Recurrent Neural Networks

Nov 13, 2018
Chang Xu, Weiran Huang, Hongwei Wang, Gang Wang, Tie-Yan Liu

Recurrent Neural Networks (RNNs) have been widely used in processing natural language tasks and achieve huge success. Traditional RNNs usually treat each token in a sentence uniformly and equally. However, this may miss the rich semantic structure information of a sentence, which is useful for understanding natural languages. Since semantic structures such as word dependence patterns are not parameterized, it is a challenge to capture and leverage structure information. In this paper, we propose an improved variant of RNN, Multi-Channel RNN (MC-RNN), to dynamically capture and leverage local semantic structure information. Concretely, MC-RNN contains multiple channels, each of which represents a local dependence pattern at a time. An attention mechanism is introduced to combine these patterns at each step, according to the semantic information. Then we parameterize structure information by adaptively selecting the most appropriate connection structures among channels. In this way, diverse local structures and dependence patterns in sentences can be well captured by MC-RNN. To verify the effectiveness of MC-RNN, we conduct extensive experiments on typical natural language processing tasks, including neural machine translation, abstractive summarization, and language modeling. Experimental results on these tasks all show significant improvements of MC-RNN over current top systems.

  Click for Model/Code and Paper
Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers

Jul 23, 2018
Quanming Yao, James T. Kwok, Taifeng Wang, Tie-Yan Liu

Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is much more challenging. Recent state-of-the-art requires an expensive full SVD in each iteration. In this paper, we show that for many commonly-used nonconvex low-rank regularizers, a cutoff can be derived to automatically threshold the singular values obtained from the proximal operator. This allows such operator being efficiently approximated by power method. Based on it, we develop a proximal gradient algorithm (and its accelerated variant) with inexact proximal splitting and prove that a convergence rate of O(1/T) where T is the number of iterations is guaranteed. Furthermore, we show the proposed algorithm can be well parallelized, which achieves nearly linear speedup w.r.t the number of threads. Extensive experiments are performed on matrix completion and robust principal component analysis, which shows a significant speedup over the state-of-the-art. Moreover, the matrix solution obtained is more accurate and has a lower rank than that of the nuclear norm regularizer.

* Accepted by TPAMI in 2018 (extension of ICDM-2015 conference paper arXiv:1512.00984) 

  Click for Model/Code and Paper
Dense Information Flow for Neural Machine Translation

Jul 02, 2018
Yanyao Shen, Xu Tan, Di He, Tao Qin, Tie-Yan Liu

Recently, neural machine translation has achieved remarkable progress by introducing well-designed deep neural networks into its encoder-decoder framework. From the optimization perspective, residual connections are adopted to improve learning performance for both encoder and decoder in most of these deep architectures, and advanced attention connections are applied as well. Inspired by the success of the DenseNet model in computer vision problems, in this paper, we propose a densely connected NMT architecture (DenseNMT) that is able to train more efficiently for NMT. The proposed DenseNMT not only allows dense connection in creating new features for both encoder and decoder, but also uses the dense attention structure to improve attention quality. Our experiments on multiple datasets show that DenseNMT structure is more competitive and efficient.

* in Proceedings of NAACL-HLT 2018 

  Click for Model/Code and Paper
Slim-DP: A Light Communication Data Parallelism for DNN

Sep 27, 2017
Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, Tie-Yan Liu

Data parallelism has emerged as a necessary technique to accelerate the training of deep neural networks (DNN). In a typical data parallelism approach, the local workers push the latest updates of all the parameters to the parameter server and pull all merged parameters back periodically. However, with the increasing size of DNN models and the large number of workers in practice, this typical data parallelism cannot achieve satisfactory training acceleration, since it usually suffers from the heavy communication cost due to transferring huge amount of information between workers and the parameter server. In-depth understanding on DNN has revealed that it is usually highly redundant, that deleting a considerable proportion of the parameters will not significantly decline the model performance. This redundancy property exposes a great opportunity to reduce the communication cost by only transferring the information of those significant parameters during the parallel training. However, if we only transfer information of temporally significant parameters of the latest snapshot, we may miss the parameters that are insignificant now but have potential to become significant as the training process goes on. To this end, we design an Explore-Exploit framework to dynamically choose the subset to be communicated, which is comprised of the significant parameters in the latest snapshot together with a random explored set of other parameters. We propose to measure the significance of the parameter by the combination of its magnitude and gradient. Our experimental results demonstrate that our proposed Slim-DP can achieve better training acceleration than standard data parallelism and its communication-efficient version by saving communication time without loss of accuracy.

  Click for Model/Code and Paper
Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks

Jul 18, 2017
Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, Tie-Yan Liu

Parallelization framework has become a necessity to speed up the training of deep neural networks (DNN) recently. Such framework typically employs the Model Average approach, denoted as MA-DNN, in which parallel workers conduct respective training based on their own local data while the parameters of local models are periodically communicated and averaged to obtain a global model which serves as the new start of local models. However, since DNN is a highly non-convex model, averaging parameters cannot ensure that such global model can perform better than those local models. To tackle this problem, we introduce a new parallel training framework called Ensemble-Compression, denoted as EC-DNN. In this framework, we propose to aggregate the local models by ensemble, i.e., averaging the outputs of local models instead of the parameters. As most of prevalent loss functions are convex to the output of DNN, the performance of ensemble-based global model is guaranteed to be at least as good as the average performance of local models. However, a big challenge lies in the explosion of model size since each round of ensemble can give rise to multiple times size increment. Thus, we carry out model compression after each ensemble, specialized by a distillation based method in this paper, to reduce the size of the global model to be the same as the local ones. Our experimental results demonstrate the prominent advantage of EC-DNN over MA-DNN in terms of both accuracy and speedup.

* ECML 2017 

  Click for Model/Code and Paper