Word embeddings generated by neural network methods such as word2vec (W2V) are well known to exhibit seemingly linear behaviour, e.g. the embeddings of analogy "woman is to queen as man is to king" approximately describe a parallelogram. This property is particularly intriguing since the embeddings are not trained to achieve it. Several explanations have been proposed, but each introduces assumptions that do not hold in practice. We derive a probabilistically grounded definition of paraphrasing and show it can be re-interpreted as word transformation, a mathematical description of "$w_x$ is to $w_y$". From these concepts we prove existence of the linear relationship between W2V-type embeddings that underlies the analogical phenomenon, and identify explicit error terms in the relationship.

Click to Read Paper
Most contemporary multi-task learning methods assume linear models. This setting is considered shallow in the era of deep learning. In this paper, we present a new deep multi-task representation learning framework that learns cross-task sharing structure at every layer in a deep network. Our approach is based on generalising the matrix factorisation techniques explicitly or implicitly used by many conventional MTL algorithms to tensor factorisation, to realise automatic learning of end-to-end knowledge sharing in deep networks. This is in contrast to existing deep learning approaches that need a user-defined multi-task sharing strategy. Our approach applies to both homogeneous and heterogeneous MTL. Experiments demonstrate the efficacy of our deep multi-task representation learning in terms of both higher accuracy and fewer design choices.

* 9 pages, Accepted to ICLR 2017 Conference Track. This is a conference version of the paper. For the multi-domain learning part (not in this version), please refer to https://arxiv.org/pdf/1605.06391v1.pdf
Click to Read Paper
Most visual recognition methods implicitly assume the data distribution remains unchanged from training to testing. However, in practice domain shift often exists, where real-world factors such as lighting and sensor type change between train and test, and classifiers do not generalise from source to target domains. It is impractical to train separate models for all possible situations because collecting and labelling the data is expensive. Domain adaptation algorithms aim to ameliorate domain shift, allowing a model trained on a source to perform well on a different target domain. However, even for the setting of unsupervised domain adaptation, where the target domain is unlabelled, collecting data for every possible target domain is still costly. In this paper, we propose a new domain adaptation method that has no need to access either data or labels of the target domain when it can be described by a parametrised vector and there exits several related source domains within the same parametric space. It greatly reduces the burden of data collection and annotation, and our experiments show some promising results.

* Accepted to BMVC 2015 Workshop on Differential Geometry in Computer Vision (DIFF-CV)
Click to Read Paper
We propose a framework for training multiple neural networks simultaneously. The parameters from all models are regularised by the tensor trace norm, so that each neural network is encouraged to reuse others' parameters if possible -- this is the main motivation behind multi-task learning. In contrast to many deep multi-task learning models, we do not predefine a parameter sharing strategy by specifying which layers have tied parameters. Instead, our framework considers sharing for all shareable layers, and the sharing strategy is learned in a data-driven way.

* Submission to Workshop track - ICLR 2017
Click to Read Paper
Multi-domain learning aims to benefit from simultaneously learning across several different but related domains. In this chapter, we propose a single framework that unifies multi-domain learning (MDL) and the related but better studied area of multi-task learning (MTL). By exploiting the concept of a \emph{semantic descriptor} we show how our framework encompasses various classic and recent MDL/MTL algorithms as special cases with different semantic descriptor encodings. As a second contribution, we present a higher order generalisation of this framework, capable of simultaneous multi-task-multi-domain learning. This generalisation has two mathematically equivalent views in multi-linear algebra and gated neural networks respectively. Moreover, by exploiting the semantic descriptor, it provides neural networks the capability of zero-shot learning (ZSL), where a classifier is generated for an unseen class without any training data; as well as zero-shot domain adaptation (ZSDA), where a model is generated for an unseen domain without any training data. In practice, this framework provides a powerful yet easy to implement method that can be flexibly applied to MTL, MDL, ZSL and ZSDA.

* Invited book chapter
Click to Read Paper
In this paper, we provide a new neural-network based perspective on multi-task learning (MTL) and multi-domain learning (MDL). By introducing the concept of a semantic descriptor, this framework unifies MDL and MTL as well as encompassing various classic and recent MTL/MDL algorithms by interpreting them as different ways of constructing semantic descriptors. Our interpretation provides an alternative pipeline for zero-shot learning (ZSL), where a model for a novel class can be constructed without training data. Moreover, it leads to a new and practically relevant problem setting of zero-shot domain adaptation (ZSDA), which is the analogous to ZSL but for novel domains: A model for an unseen domain can be generated by its semantic descriptor. Experiments across this range of problems demonstrate that our framework outperforms a variety of alternatives.

* 9 pages, Accepted to ICLR 2015 Conference Track
Click to Read Paper
Learning algorithms are enabling robots to solve increasingly challenging real-world tasks. These approaches often rely on demonstrations and reproduce the behavior shown. Unexpected changes in the environment may require using different behaviors to achieve the same effect, for instance to reach and grasp an object in changing clutter. An emerging paradigm addressing this robustness issue is to learn a diverse set of successful behaviors for a given task, from which a robot can select the most suitable policy when faced with a new environment. In this paper, we explore a novel realization of this vision by learning a generative model over policies. Rather than learning a single policy, or a small fixed repertoire, our generative model for policies compactly encodes an unbounded number of policies and allows novel controller variants to be sampled. Leveraging our generative policy network, a robot can sample novel behaviors until it finds one that works for a new environment. We demonstrate this idea with an application of robust ball-throwing in the presence of obstacles. We show that this approach achieves a greater diversity of behaviors than an existing evolutionary approach, while maintaining good efficacy of sampled behaviors, allowing a Baxter robot to hit targets more often when ball throwing in the presence of obstacles.

* 6 pages, 6 figures
Click to Read Paper
Vector representation, or embedding, of words is commonly achieved with neural network methods, in particular word2vec (W2V). It has been shown that certain statistics of word co-occurrences are implicitly captured by properties of W2V vectors, but much remains unknown of them, e.g. any meaning of length, or more generally how it is that statistics can be reliably framed as vectors at all. By deriving a mathematical link between probabilities and vectors, we justify why W2V works and are able to create embeddings with probabilistically interpretable properties.

Click to Read Paper
The number of categories for action recognition is growing rapidly and it has become increasingly hard to label sufficient training data for learning conventional models for all categories. Instead of collecting ever more data and labelling them exhaustively for all categories, an attractive alternative approach is zero-shot learning" (ZSL). To that end, in this study we construct a mapping between visual features and a semantic descriptor of each action category, allowing new categories to be recognised in the absence of any visual training data. Existing ZSL studies focus primarily on still images, and attribute-based semantic representations. In this work, we explore word-vectors as the shared semantic space to embed videos and category labels for ZSL action recognition. This is a more challenging problem than existing ZSL of still images and/or attributes, because the mapping between video spacetime features of actions and the semantic space is more complex and harder to learn for the purpose of generalising over any cross-category domain shift. To solve this generalisation problem in ZSL action recognition, we investigate a series of synergistic strategies to improve upon the standard ZSL pipeline. Most of these strategies are transductive in nature which means access to testing data in the training phase.

* Accepted by IJCV
Click to Read Paper
The growing rate of public space CCTV installations has generated a need for automated methods for exploiting video surveillance data including scene understanding, query, behaviour annotation and summarization. For this reason, extensive research has been performed on surveillance scene understanding and analysis. However, most studies have considered single scenes, or groups of adjacent scenes. The semantic similarity between different but related scenes (e.g., many different traffic scenes of similar layout) is not generally exploited to improve any automated surveillance tasks and reduce manual effort. Exploiting commonality, and sharing any supervised annotations, between different scenes is however challenging due to: Some scenes are totally un-related -- and thus any information sharing between them would be detrimental; while others may only share a subset of common activities -- and thus information sharing is only useful if it is selective. Moreover, semantically similar activities which should be modelled together and shared across scenes may have quite different pixel-level appearance in each scene. To address these issues we develop a new framework for distributed multiple-scene global understanding that clusters surveillance scenes by their ability to explain each other's behaviours; and further discovers which subset of activities are shared versus scene-specific within each cluster. We show how to use this structured representation of multiple scenes to improve common surveillance tasks including scene activity understanding, cross-scene query-by-example, behaviour classification with reduced supervised labelling requirements, and video summarization. In each case we demonstrate how our multi-scene model improves on a collection of standard single scene models and a flat model of all scenes.

* Multi-Scene Traffic Behaviour Analysis ---- Accepted at IEEE Transactions on Circuits and Systems for Video Technology
Click to Read Paper
The number of categories for action recognition is growing rapidly. It is thus becoming increasingly hard to collect sufficient training data to learn conventional models for each category. This issue may be ameliorated by the increasingly popular 'zero-shot learning' (ZSL) paradigm. In this framework a mapping is constructed between visual features and a human interpretable semantic description of each category, allowing categories to be recognised in the absence of any training data. Existing ZSL studies focus primarily on image data, and attribute-based semantic representations. In this paper, we address zero-shot recognition in contemporary video action recognition tasks, using semantic word vector space as the common space to embed videos and category labels. This is more challenging because the mapping between the semantic space and space-time features of videos containing complex actions is more complex and harder to learn. We demonstrate that a simple self-training and data augmentation strategy can significantly improve the efficacy of this mapping. Experiments on human action datasets including HMDB51 and UCF101 demonstrate that our approach achieves the state-of-the-art zero-shot action recognition performance.

* 5 pages
Click to Read Paper
Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively simple but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms all previous state-of-the-art models across standard link prediction datasets. We prove that TuckER is a fully expressive model, deriving the bound on its entity and relation embedding dimensionality for full expressiveness which is several orders of magnitude smaller than the bound of previous state-of-the-art models ComplEx and SimplE. We further show that several previously introduced linear models can be viewed as special cases of TuckER.

Click to Read Paper
Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We approach this task using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.

Click to Read Paper
Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset.

* To Appear at CVPR2018
Click to Read Paper
Recently the widely used multi-view learning model, Canonical Correlation Analysis (CCA) has been generalised to the non-linear setting via deep neural networks. Existing deep CCA models typically first decorrelate the feature dimensions of each view before the different views are maximally correlated in a common latent space. This feature decorrelation is achieved by enforcing an exact decorrelation constraint; these models are thus computationally expensive due to the matrix inversion or SVD operations required for exact decorrelation at each training iteration. Furthermore, the decorrelation step is often separated from the gradient descent based optimisation, resulting in sub-optimal solutions. We propose a novel deep CCA model Soft CCA to overcome these problems. Specifically, exact decorrelation is replaced by soft decorrelation via a mini-batch based Stochastic Decorrelation Loss (SDL) to be optimised jointly with the other training objectives. Extensive experiments show that the proposed soft CCA is more effective and efficient than existing deep CCA models. In addition, our SDL loss can be applied to other deep models beyond multi-view learning, and obtains superior performance compared to existing decorrelation losses.

* To Appear at CVPR2018
Click to Read Paper
Increasingly many real world tasks involve data in multiple modalities or views. This has motivated the development of many effective algorithms for learning a common latent space to relate multiple domains. However, most existing cross-view learning algorithms assume access to paired data for training. Their applicability is thus limited as the paired data assumption is often violated in practice: many tasks have only a small subset of data available with pairing annotation, or even no paired data at all. In this paper we introduce Deep Matching Autoencoders (DMAE), which learn a common latent space and pairing from unpaired multi-modal data. Specifically we formulate this as a cross-domain representation learning and object matching problem. We simultaneously optimise parameters of representation learning auto-encoders and the pairing of unpaired multi-modal data. This framework elegantly spans the full regime from fully supervised, semi-supervised, and unsupervised (no paired data) multi-modal learning. We show promising results in image captioning, and on a new task that is uniquely enabled by our methodology: unsupervised classifier learning.

* 10 pages
Click to Read Paper
We address the problem of localisation of objects as bounding boxes in images and videos with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. In this paper, a novel framework based on Bayesian joint topic modelling is proposed, which differs significantly from the existing ones in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple object co-existence so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) Image backgrounds are shared across classes to better learn varying surroundings and "push out" objects of interest. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Moreover, the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object videos datasets demonstrate the effectiveness of our Bayesian joint model for weakly supervised object localisation.

* Accepted in IEEE Transaction on Pattern Analysis and Machine Intelligence
Click to Read Paper
Learning semantic attributes for person re-identification and description-based person search has gained increasing interest due to attributes' great potential as a pose and view-invariant representation. However, existing attribute-centric approaches have thus far underperformed state-of-the-art conventional approaches. This is due to their non-scalable need for extensive domain (camera) specific annotation. In this paper we present a new semantic attribute learning approach for person re-identification and search. Our model is trained on existing fashion photography datasets -- either weakly or strongly labelled. It can then be transferred and adapted to provide a powerful semantic description of surveillance person detections, without requiring any surveillance domain supervision. The resulting representation is useful for both unsupervised and supervised person re-identification, achieving state-of-the-art and near state-of-the-art performance respectively. Furthermore, as a semantic representation it allows description-based person search to be integrated within the same framework.

* cvpr 2015
Click to Read Paper
We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framework based on Bayesian joint topic modelling. Our framework has three distinctive advantages over previous works: (1) All object classes and image backgrounds are modelled jointly together in a single generative model so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) The Bayesian formulation of the model enables easy integration of prior knowledge about object appearance to compensate for limited supervision. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Extensive experiments on the challenging VOC dataset demonstrate that our approach outperforms the state-of-the-art competitors.

* iccv 2013
Click to Read Paper
Zero-Shot Learning (ZSL) promises to scale visual recognition by bypassing the conventional model training requirement of annotated examples for every category. This is achieved by establishing a mapping connecting low-level features and a semantic description of the label space, referred as visual-semantic mapping, on auxiliary data. Reusing the learned mapping to project target videos into an embedding space thus allows novel-classes to be recognised by nearest neighbour inference. However, existing ZSL methods suffer from auxiliary-target domain shift intrinsically induced by assuming the same mapping for the disjoint auxiliary and target classes. This compromises the generalisation accuracy of ZSL recognition on the target data. In this work, we improve the ability of ZSL to generalise across this domain shift in both model- and data-centric ways by formulating a visual-semantic mapping with better generalisation properties and a dynamic data re-weighting method to prioritise auxiliary data that are relevant to the target classes. Specifically: (1) We introduce a multi-task visual-semantic mapping to improve generalisation by constraining the semantic mapping parameters to lie on a low-dimensional manifold, (2) We explore prioritised data augmentation by expanding the pool of auxiliary data with additional instances weighted by relevance to the target domain. The proposed new model is applied to the challenging zero-shot action recognition problem to demonstrate its advantages over existing ZSL models.

* Published in ECCV 2016
Click to Read Paper