Models, code, and papers for "Timothy Lillicrap":

What does it mean to understand a neural network?

Jul 15, 2019
Timothy P. Lillicrap, Konrad P. Kording

We can define a neural network that can learn to recognize objects in less than 100 lines of code. However, after training, it is characterized by millions of weights that contain the knowledge about many object types across visual scenes. Such networks are thus dramatically easier to understand in terms of the code that makes them than the resulting properties, such as tuning or connections. In analogy, we conjecture that rules for development and learning in brains may be far easier to understand than their resulting properties. The analogy suggests that neuroscience would benefit from a focus on learning and development.

* 9 pages, 2 figures 

  Click for Model/Code and Paper
Deep Compressed Sensing

May 18, 2019
Yan Wu, Mihaela Rosca, Timothy Lillicrap

Compressed sensing (CS) provides an elegant framework for recovering sparse signals from compressed measurements. For example, CS can exploit the structure of natural images and recover an image from only a few random measurements. CS is flexible and data efficient, but its application has been restricted by the strong assumption of sparsity and costly reconstruction process. A recent approach that combines CS with neural network generators has removed the constraint of sparsity, but reconstruction remains slow. Here we propose a novel framework that significantly improves both the performance and speed of signal recovery by jointly training a generator and the optimisation process for reconstruction via meta-learning. We explore training the measurements with different objectives, and derive a family of models based on minimising measurement errors. We show that Generative Adversarial Nets (GANs) can be viewed as a special case in this family of models. Borrowing insights from the CS perspective, we develop a novel way of improving GANs using gradient information from the discriminator.

* ICML 2019 

  Click for Model/Code and Paper
Meta-Learning Neural Bloom Filters

Jun 10, 2019
Jack W Rae, Sergey Bartunov, Timothy P Lillicrap

There has been a recent trend in training neural networks to replace data structures that have been crafted by hand, with an aim for faster execution, better accuracy, or greater compression. In this setting, a neural data structure is instantiated by training a network over many epochs of its inputs until convergence. In applications where inputs arrive at high throughput, or are ephemeral, training a network from scratch is not practical. This motivates the need for few-shot neural data structures. In this paper we explore the learning of approximate set membership over a set of data in one-shot via meta-learning. We propose a novel memory architecture, the Neural Bloom Filter, which is able to achieve significant compression gains over classical Bloom Filters and existing memory-augmented neural networks.

* International Conference on Machine Learning 2019 

  Click for Model/Code and Paper
Learning Attractor Dynamics for Generative Memory

Nov 23, 2018
Yan Wu, Greg Wayne, Karol Gregor, Timothy Lillicrap

A central challenge faced by memory systems is the robust retrieval of a stored pattern in the presence of interference due to other stored patterns and noise. A theoretically well-founded solution to robust retrieval is given by attractor dynamics, which iteratively clean up patterns during recall. However, incorporating attractor dynamics into modern deep learning systems poses difficulties: attractor basins are characterised by vanishing gradients, which are known to make training neural networks difficult. In this work, we avoid the vanishing gradient problem by training a generative distributed memory without simulating the attractor dynamics. Based on the idea of memory writing as inference, as proposed in the Kanerva Machine, we show that a likelihood-based Lyapunov function emerges from maximising the variational lower-bound of a generative memory. Experiments shows it converges to correct patterns upon iterative retrieval and achieves competitive performance as both a memory model and a generative model.


  Click for Model/Code and Paper
The Kanerva Machine: A Generative Distributed Memory

Jun 18, 2018
Yan Wu, Greg Wayne, Alex Graves, Timothy Lillicrap

We present an end-to-end trained memory system that quickly adapts to new data and generates samples like them. Inspired by Kanerva's sparse distributed memory, it has a robust distributed reading and writing mechanism. The memory is analytically tractable, which enables optimal on-line compression via a Bayesian update-rule. We formulate it as a hierarchical conditional generative model, where memory provides a rich data-dependent prior distribution. Consequently, the top-down memory and bottom-up perception are combined to produce the code representing an observation. Empirically, we demonstrate that the adaptive memory significantly improves generative models trained on both the Omniglot and CIFAR datasets. Compared with the Differentiable Neural Computer (DNC) and its variants, our memory model has greater capacity and is significantly easier to train.

* Published as a conference paper at ICLR 2018 (corrected typos in revision) 

  Click for Model/Code and Paper
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates

Nov 23, 2016
Shixiang Gu, Ethan Holly, Timothy Lillicrap, Sergey Levine

Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered policy representations and human-supplied demonstrations. Deep reinforcement learning alleviates this limitation by training general-purpose neural network policies, but applications of direct deep reinforcement learning algorithms have so far been restricted to simulated settings and relatively simple tasks, due to their apparent high sample complexity. In this paper, we demonstrate that a recent deep reinforcement learning algorithm based on off-policy training of deep Q-functions can scale to complex 3D manipulation tasks and can learn deep neural network policies efficiently enough to train on real physical robots. We demonstrate that the training times can be further reduced by parallelizing the algorithm across multiple robots which pool their policy updates asynchronously. Our experimental evaluation shows that our method can learn a variety of 3D manipulation skills in simulation and a complex door opening skill on real robots without any prior demonstrations or manually designed representations.


  Click for Model/Code and Paper
Continuous Deep Q-Learning with Model-based Acceleration

Mar 02, 2016
Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, Sergey Levine

Model-free reinforcement learning has been successfully applied to a range of challenging problems, and has recently been extended to handle large neural network policies and value functions. However, the sample complexity of model-free algorithms, particularly when using high-dimensional function approximators, tends to limit their applicability to physical systems. In this paper, we explore algorithms and representations to reduce the sample complexity of deep reinforcement learning for continuous control tasks. We propose two complementary techniques for improving the efficiency of such algorithms. First, we derive a continuous variant of the Q-learning algorithm, which we call normalized adantage functions (NAF), as an alternative to the more commonly used policy gradient and actor-critic methods. NAF representation allows us to apply Q-learning with experience replay to continuous tasks, and substantially improves performance on a set of simulated robotic control tasks. To further improve the efficiency of our approach, we explore the use of learned models for accelerating model-free reinforcement learning. We show that iteratively refitted local linear models are especially effective for this, and demonstrate substantially faster learning on domains where such models are applicable.


  Click for Model/Code and Paper
Meta-Learning Deep Energy-Based Memory Models

Oct 07, 2019
Sergey Bartunov, Jack W Rae, Simon Osindero, Timothy P Lillicrap

We study the problem of learning associative memory -- a system which is able to retrieve a remembered pattern based on its distorted or incomplete version. Attractor networks provide a sound model of associative memory: patterns are stored as attractors of the network dynamics and associative retrieval is performed by running the dynamics starting from a query pattern until it converges to an attractor. In such models the dynamics are often implemented as an optimization procedure that minimizes an energy function, such as in the classical Hopfield network. In general it is difficult to derive a writing rule for a given dynamics and energy that is both compressive and fast. Thus, most research in energy-based memory has been limited either to tractable energy models not expressive enough to handle complex high-dimensional objects such as natural images, or to models that do not offer fast writing. We present a novel meta-learning approach to energy-based memory models (EBMM) that allows one to use an arbitrary neural architecture as an energy model and quickly store patterns in its weights. We demonstrate experimentally that our EBMM approach can build compressed memories for synthetic and natural data, and is capable of associative retrieval that outperforms existing memory systems in terms of the reconstruction error and compression rate.


  Click for Model/Code and Paper
Entropic Policy Composition with Generalized Policy Improvement and Divergence Correction

Dec 05, 2018
Jonathan J Hunt, Andre Barreto, Timothy P Lillicrap, Nicolas Heess

Deep reinforcement learning (RL) algorithms have made great strides in recent years. An important remaining challenge is the ability to quickly transfer existing skills to novel tasks, and to combine existing skills with newly acquired ones. In domains where tasks are solved by composing skills this capacity holds the promise of dramatically reducing the data requirements of deep RL algorithms, and hence increasing their applicability. Recent work has studied ways of composing behaviors represented in the form of action-value functions. We analyze these methods to highlight their strengths and weaknesses, and point out situations where each of them is susceptible to poor performance. To perform this analysis we extend generalized policy improvement to the max-entropy framework and introduce a method for the practical implementation of successor features in continuous action spaces. Then we propose a novel approach which, in principle, recovers the optimal policy during transfer. This method works by explicitly learning the (discounted, future) divergence between policies. We study this approach in the tabular case and propose a scalable variant that is applicable in multi-dimensional continuous action spaces. We compare our approach with existing ones on a range of non-trivial continuous control problems with compositional structure, and demonstrate qualitatively better performance despite not requiring simultaneous observation of all task rewards.


  Click for Model/Code and Paper
Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors

Oct 31, 2018
Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, James Davidson

Obtaining reliable uncertainty estimates of neural network predictions is a long standing challenge. Bayesian neural networks have been proposed as a solution, but it remains open how to specify their prior. In particular, the common practice of a standard normal prior in weight space imposes only weak regularities, causing the function posterior to possibly generalize in unforeseen ways on inputs outside of the training distribution. We propose noise contrastive priors (NCPs) to obtain reliable uncertainty estimates. The key idea is to train the model to output high uncertainty for data points outside of the training distribution. NCPs do so using an input prior, which adds noise to the inputs of the current mini batch, and an output prior, which is a wide distribution given these inputs. NCPs are compatible with any model that can output uncertainty estimates, are easy to scale, and yield reliable uncertainty estimates throughout training. Empirically, we show that NCPs prevent overfitting outside of the training distribution and result in uncertainty estimates that are useful for active learning. We demonstrate the scalability of our method on the flight delays data set, where we significantly improve upon previously published results.

* 9 pages, 5 figures 

  Click for Model/Code and Paper
Fast Parametric Learning with Activation Memorization

Mar 27, 2018
Jack W Rae, Chris Dyer, Peter Dayan, Timothy P Lillicrap

Neural networks trained with backpropagation often struggle to identify classes that have been observed a small number of times. In applications where most class labels are rare, such as language modelling, this can become a performance bottleneck. One potential remedy is to augment the network with a fast-learning non-parametric model which stores recent activations and class labels into an external memory. We explore a simplified architecture where we treat a subset of the model parameters as fast memory stores. This can help retain information over longer time intervals than a traditional memory, and does not require additional space or compute. In the case of image classification, we display faster binding of novel classes on an Omniglot image curriculum task. We also show improved performance for word-based language models on news reports (GigaWord), books (Project Gutenberg) and Wikipedia articles (WikiText-103) --- the latter achieving a state-of-the-art perplexity of 29.2.


  Click for Model/Code and Paper
Matching Networks for One Shot Learning

Dec 29, 2017
Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.


  Click for Model/Code and Paper
One-shot Learning with Memory-Augmented Neural Networks

May 19, 2016
Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap

Despite recent breakthroughs in the applications of deep neural networks, one setting that presents a persistent challenge is that of "one-shot learning." Traditional gradient-based networks require a lot of data to learn, often through extensive iterative training. When new data is encountered, the models must inefficiently relearn their parameters to adequately incorporate the new information without catastrophic interference. Architectures with augmented memory capacities, such as Neural Turing Machines (NTMs), offer the ability to quickly encode and retrieve new information, and hence can potentially obviate the downsides of conventional models. Here, we demonstrate the ability of a memory-augmented neural network to rapidly assimilate new data, and leverage this data to make accurate predictions after only a few samples. We also introduce a new method for accessing an external memory that focuses on memory content, unlike previous methods that additionally use memory location-based focusing mechanisms.

* 13 pages, 8 figures 

  Click for Model/Code and Paper
Memory-based control with recurrent neural networks

Dec 14, 2015
Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, David Silver

Partially observed control problems are a challenging aspect of reinforcement learning. We extend two related, model-free algorithms for continuous control -- deterministic policy gradient and stochastic value gradient -- to solve partially observed domains using recurrent neural networks trained with backpropagation through time. We demonstrate that this approach, coupled with long-short term memory is able to solve a variety of physical control problems exhibiting an assortment of memory requirements. These include the short-term integration of information from noisy sensors and the identification of system parameters, as well as long-term memory problems that require preserving information over many time steps. We also demonstrate success on a combined exploration and memory problem in the form of a simplified version of the well-known Morris water maze task. Finally, we show that our approach can deal with high-dimensional observations by learning directly from pixels. We find that recurrent deterministic and stochastic policies are able to learn similarly good solutions to these tasks, including the water maze where the agent must learn effective search strategies.

* NIPS Deep Reinforcement Learning Workshop 2015 

  Click for Model/Code and Paper
Deep Learning without Weight Transport

May 31, 2019
Mohamed Akrout, Collin Wilson, Peter C. Humphreys, Timothy Lillicrap, Douglas Tweed

Current algorithms for deep learning probably cannot run in the brain because they rely on weight transport, where forward-path neurons transmit their synaptic weights to a feedback path, in a way that is likely impossible biologically. An algorithm called feedback alignment achieves deep learning without weight transport by using random feedback weights, but it performs poorly on hard visual-recognition tasks. Here we describe two mechanisms - a neural circuit called a weight mirror and a modification of an algorithm proposed by Kolen and Pollack in 1994 - both of which let the feedback path learn appropriate synaptic weights quickly and accurately even in large networks, without weight transport or complex wiring.Tested on the ImageNet visual-recognition task, these mechanisms outperform both feedback alignment and the newer sign-symmetry method, and nearly match backprop, the standard algorithm of deep learning, which uses weight transport.


  Click for Model/Code and Paper
Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette

Apr 18, 2019
Adam Santoro, Felix Hill, David Barrett, David Raposo, Matthew Botvinick, Timothy Lillicrap

Brette contends that the neural coding metaphor is an invalid basis for theories of what the brain does. Here, we argue that it is an insufficient guide for building an artificial intelligence that learns to accomplish short- and long-term goals in a complex, changing environment.


  Click for Model/Code and Paper
Experience Replay for Continual Learning

Nov 28, 2018
David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, Greg Wayne

Continual learning is the problem of learning new tasks or knowledge while protecting old knowledge and ideally generalizing from old experience to learn new tasks faster. Neural networks trained by stochastic gradient descent often degrade on old tasks when trained successively on new tasks with different data distributions. This phenomenon, referred to as catastrophic forgetting, is considered a major hurdle to learning with non-stationary data or sequences of new tasks, and prevents networks from continually accumulating knowledge and skills. We examine this issue in the context of reinforcement learning, in a setting where an agent is exposed to tasks in a sequence. Unlike most other work, we do not provide an explicit indication to the model of task boundaries, which is the most general circumstance for a learning agent exposed to continuous experience. While various methods to counteract catastrophic forgetting have recently been proposed, we explore a straightforward, general, and seemingly overlooked solution - that of using experience replay buffers for all past events - with a mixture of on- and off-policy learning, leveraging behavioral cloning. We show that this strategy can still learn new tasks quickly yet can substantially reduce catastrophic forgetting in both Atari and DMLab domains, even matching the performance of methods that require task identities. When buffer storage is constrained, we confirm that a simple mechanism for randomly discarding data allows a limited size buffer to perform almost as well as an unbounded one.


  Click for Model/Code and Paper
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures

Jul 12, 2018
Sergey Bartunov, Adam Santoro, Blake A. Richards, Geoffrey E. Hinton, Timothy Lillicrap

The backpropagation of error algorithm (BP) is often said to be impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might implement or approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present the first results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.


  Click for Model/Code and Paper
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

Feb 27, 2017
Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine

Model-free deep reinforcement learning (RL) methods have been successful in a wide variety of simulated domains. However, a major obstacle facing deep RL in the real world is their high sample complexity. Batch policy gradient methods offer stable learning, but at the cost of high variance, which often requires large batches. TD-style methods, such as off-policy actor-critic and Q-learning, are more sample-efficient but biased, and often require costly hyperparameter sweeps to stabilize. In this work, we aim to develop methods that combine the stability of policy gradients with the efficiency of off-policy RL. We present Q-Prop, a policy gradient method that uses a Taylor expansion of the off-policy critic as a control variate. Q-Prop is both sample efficient and stable, and effectively combines the benefits of on-policy and off-policy methods. We analyze the connection between Q-Prop and existing model-free algorithms, and use control variate theory to derive two variants of Q-Prop with conservative and aggressive adaptation. We show that conservative Q-Prop provides substantial gains in sample efficiency over trust region policy optimization (TRPO) with generalized advantage estimation (GAE), and improves stability over deep deterministic policy gradient (DDPG), the state-of-the-art on-policy and off-policy methods, on OpenAI Gym's MuJoCo continuous control environments.

* Conference Paper at the International Conference on Learning Representations (ICLR) 2017 

  Click for Model/Code and Paper