Research papers and code for "Truong Q. Nguyen":
In this work, we present a random forest framework that learns the weights, shapes, and sparsities of feature representations for real-time semantic segmentation. Typical filters (kernels) have predetermined shapes and sparsities and learn only weights. A few feature extraction methods fix weights and learn only shapes and sparsities. These predetermined constraints restrict learning and extracting optimal features. To overcome this limitation, we propose an unconstrained representation that is able to extract optimal features by learning weights, shapes, and sparsities. We, then, present the random forest framework that learns the flexible filters using an iterative optimization algorithm and segments input images using the learned representations. We demonstrate the effectiveness of the proposed method using a hand segmentation dataset for hand-object interaction and using two semantic segmentation datasets. The results show that the proposed method achieves real-time semantic segmentation using limited computational and memory resources.

Click to Read Paper and Get Code
In this paper, we present a generative adversarial network framework that generates compressed images instead of synthesizing raw RGB images and compressing them separately. In the real world, most images and videos are stored and transferred in a compressed format to save storage capacity and data transfer bandwidth. However, since typical generative adversarial networks generate raw RGB images, those generated images need to be compressed by a post-processing stage to reduce the data size. Among image compression methods, JPEG has been one of the most commonly used lossy compression methods for still images. Hence, we propose a novel framework that generates JPEG compressed images using generative adversarial networks. The novel generator consists of the proposed locally connected layers, chroma subsampling layers, quantization layers, residual blocks, and convolution layers. The locally connected layer is proposed to enable block-based operations. We also discuss training strategies for the proposed architecture including the loss function and the transformation between its generator and its discriminator. The proposed method is evaluated using the publicly available CIFAR-10 dataset and LSUN bedroom dataset. The results demonstrate that the proposed method is able to generate compressed data with competitive qualities. The proposed method is a promising baseline method for joint image generation and compression using generative adversarial networks.

Click to Read Paper and Get Code
In this work, we present the depth-adaptive deep neural network using a depth map for semantic segmentation. Typical deep neural networks receive inputs at the predetermined locations regardless of the distance from the camera. This fixed receptive field presents a challenge to generalize the features of objects at various distances in neural networks. Specifically, the predetermined receptive fields are too small at a short distance, and vice versa. To overcome this challenge, we develop a neural network which is able to adapt the receptive field not only for each layer but also for each neuron at the spatial location. To adjust the receptive field, we propose the depth-adaptive multiscale (DaM) convolution layer consisting of the adaptive perception neuron and the in-layer multiscale neuron. The adaptive perception neuron is to adjust the receptive field at each spatial location using the corresponding depth information. The in-layer multiscale neuron is to apply the different size of the receptive field at each feature space to learn features at multiple scales. The proposed DaM convolution is applied to two fully convolutional neural networks. We demonstrate the effectiveness of the proposed neural networks on the publicly available RGB-D dataset for semantic segmentation and the novel hand segmentation dataset for hand-object interaction. The experimental results show that the proposed method outperforms the state-of-the-art methods without any additional layers or pre/post-processing.

* IEEE Transactions on Multimedia, 2018
Click to Read Paper and Get Code
Real-time hand articulations tracking is important for many applications such as interacting with virtual / augmented reality devices or tablets. However, most of existing algorithms highly rely on expensive and high power-consuming GPUs to achieve real-time processing. Consequently, these systems are inappropriate for mobile and wearable devices. In this paper, we propose an efficient hand tracking system which does not require high performance GPUs. In our system, we track hand articulations by minimizing discrepancy between depth map from sensor and computer-generated hand model. We also initialize hand pose at each frame using finger detection and classification. Our contributions are: (a) propose adaptive hand model to consider different hand shapes of users without generating personalized hand model; (b) improve the highly efficient frame initialization for robust tracking and automatic initialization; (c) propose hierarchical random sampling of pixels from each depth map to improve tracking accuracy while limiting required computations. To the best of our knowledge, it is the first system that achieves both automatic hand model adjustment and real-time tracking without using GPUs.

* Advances in Visual Computing: 11th International Symposium on Visual Computing (ISVC'15)
Click to Read Paper and Get Code
Sign language recognition is important for natural and convenient communication between deaf community and hearing majority. We take the highly efficient initial step of automatic fingerspelling recognition system using convolutional neural networks (CNNs) from depth maps. In this work, we consider relatively larger number of classes compared with the previous literature. We train CNNs for the classification of 31 alphabets and numbers using a subset of collected depth data from multiple subjects. While using different learning configurations, such as hyper-parameter selection with and without validation, we achieve 99.99% accuracy for observed signers and 83.58% to 85.49% accuracy for new signers. The result shows that accuracy improves as we include more data from different subjects during training. The processing time is 3 ms for the prediction of a single image. To the best of our knowledge, the system achieves the highest accuracy and speed. The trained model and dataset is available on our repository.

* 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)
Click to Read Paper and Get Code
Patch priors have become an important component of image restoration. A powerful approach in this category of restoration algorithms is the popular Expected Patch Log-Likelihood (EPLL) algorithm. EPLL uses a Gaussian mixture model (GMM) prior learned on clean image patches as a way to regularize degraded patches. In this paper, we show that a generalized Gaussian mixture model (GGMM) captures the underlying distribution of patches better than a GMM. Even though GGMM is a powerful prior to combine with EPLL, the non-Gaussianity of its components presents major challenges to be applied to a computationally intensive process of image restoration. Specifically, each patch has to undergo a patch classification step and a shrinkage step. These two steps can be efficiently solved with a GMM prior but are computationally impractical when using a GGMM prior. In this paper, we provide approximations and computational recipes for fast evaluation of these two steps, so that EPLL can embed a GGMM prior on an image with more than tens of thousands of patches. Our main contribution is to analyze the accuracy of our approximations based on thorough theoretical analysis. Our evaluations indicate that the GGMM prior is consistently a better fit formodeling image patch distribution and performs better on average in image denoising task.

Click to Read Paper and Get Code
Generative adversarial networks (GANs) transform low-dimensional latent vectors into visually plausible images. If the real dataset contains only clean images, then ostensibly, the manifold learned by the GAN should contain only clean images. In this paper, we propose to denoise corrupted images by finding the nearest point on the GAN manifold, recovering latent vectors by minimizing distances in image space. We first demonstrate that given a corrupted version of an image that truly lies on the GAN manifold, we can approximately recover the latent vector and denoise the image, obtaining significantly higher quality, comparing with BM3D. Next, we demonstrate that latent vectors recovered from noisy images exhibit a consistent bias. By subtracting this bias before projecting back to image space, we improve denoising results even further. Finally, even for unseen images, our method performs better at denoising better than BM3D. Notably, the basic version of our method (without bias correction) requires no prior knowledge on the noise variance. To achieve the highest possible denoising quality, the best performing signal processing based methods, such as BM3D, require an estimate of the blur kernel.

Click to Read Paper and Get Code
We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the Expectation-Maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad-hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper: First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. Experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.

* 15 pages
Click to Read Paper and Get Code
We propose a data-dependent denoising procedure to restore noisy images. Different from existing denoising algorithms which search for patches from either the noisy image or a generic database, the new algorithm finds patches from a database that contains only relevant patches. We formulate the denoising problem as an optimal filter design problem and make two contributions. First, we determine the basis function of the denoising filter by solving a group sparsity minimization problem. The optimization formulation generalizes existing denoising algorithms and offers systematic analysis of the performance. Improvement methods are proposed to enhance the patch search process. Second, we determine the spectral coefficients of the denoising filter by considering a localized Bayesian prior. The localized prior leverages the similarity of the targeted database, alleviates the intensive Bayesian computation, and links the new method to the classical linear minimum mean squared error estimation. We demonstrate applications of the proposed method in a variety of scenarios, including text images, multiview images and face images. Experimental results show the superiority of the new algorithm over existing methods.

* 15 pages, 13 figures, 2 tables, journal
Click to Read Paper and Get Code
The rapid development of 3D technology and computer vision applications have motivated a thrust of methodologies for depth acquisition and estimation. However, most existing hardware and software methods have limited performance due to poor depth precision, low resolution and high computational cost. In this paper, we present a computationally efficient method to recover dense depth maps from sparse measurements. We make three contributions. First, we provide empirical evidence that depth maps can be encoded much more sparsely than natural images by using common dictionaries such as wavelets and contourlets. We also show that a combined wavelet-contourlet dictionary achieves better performance than using either dictionary alone. Second, we propose an alternating direction method of multipliers (ADMM) to achieve fast reconstruction. A multi-scale warm start procedure is proposed to speed up the convergence. Third, we propose a two-stage randomized sampling scheme to optimally choose the sampling locations, thus maximizing the reconstruction performance for any given sampling budget. Experimental results show that the proposed method produces high quality dense depth estimates, and is robust to noisy measurements. Applications to real data in stereo matching are demonstrated.

Click to Read Paper and Get Code
JPEG is one of the widely used lossy compression methods. JPEG-compressed images usually suffer from compression artifacts including blocking and blurring, especially at low bit-rates. Soft decoding is an effective solution to improve the quality of compressed images without changing codec or introducing extra coding bits. Inspired by the excellent performance of the deep convolutional neural networks (CNNs) on both low-level and high-level computer vision problems, we develop a dual pixel-wavelet domain deep CNNs-based soft decoding network for JPEG-compressed images, namely DPW-SDNet. The pixel domain deep network takes the four downsampled versions of the compressed image to form a 4-channel input and outputs a pixel domain prediction, while the wavelet domain deep network uses the 1-level discrete wavelet transformation (DWT) coefficients to form a 4-channel input to produce a DWT domain prediction. The pixel domain and wavelet domain estimates are combined to generate the final soft decoded result. Experimental results demonstrate the superiority of the proposed DPW-SDNet over several state-of-the-art compression artifacts reduction algorithms.

* CVPRW 2018
Click to Read Paper and Get Code
Image restoration methods aim to recover the underlying clean image from corrupted observations. The Expected Patch Log-likelihood (EPLL) algorithm is a powerful image restoration method that uses a Gaussian mixture model (GMM) prior on the patches of natural images. Although it is very effective for restoring images, its high runtime complexity makes EPLL ill-suited for most practical applications. In this paper, we propose three approximations to the original EPLL algorithm. The resulting algorithm, which we call the fast-EPLL (FEPLL), attains a dramatic speed-up of two orders of magnitude over EPLL while incurring a negligible drop in the restored image quality (less than 0.5 dB). We demonstrate the efficacy and versatility of our algorithm on a number of inverse problems such as denoising, deblurring, super-resolution, inpainting and devignetting. To the best of our knowledge, FEPLL is the first algorithm that can competitively restore a 512x512 pixel image in under 0.5s for all the degradations mentioned above without specialized code optimizations such as CPU parallelization or GPU implementation.

Click to Read Paper and Get Code
We propose a novel method called the Relevance Subject Machine (RSM) to solve the person re-identification (re-id) problem. RSM falls under the category of Bayesian sparse recovery algorithms and uses the sparse representation of the input video under a pre-defined dictionary to identify the subject in the video. Our approach focuses on the multi-shot re-id problem, which is the prevalent problem in many video analytics applications. RSM captures the essence of the multi-shot re-id problem by constraining the support of the sparse codes for each input video frame to be the same. Our proposed approach is also robust enough to deal with time varying outliers and occlusions by introducing a sparse, non-stationary noise term in the model error. We provide a novel Variational Bayesian based inference procedure along with an intuitive interpretation of the proposed update rules. We evaluate our approach over several commonly used re-id datasets and show superior performance over current state-of-the-art algorithms. Specifically, for ILIDS-VID, a recent large scale re-id dataset, RSM shows significant improvement over all published approaches, achieving an 11.5% (absolute) improvement in rank 1 accuracy over the closest competing algorithm considered.

* Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence
Click to Read Paper and Get Code
In this paper, we present a novel Bayesian approach to recover simultaneously block sparse signals in the presence of outliers. The key advantage of our proposed method is the ability to handle non-stationary outliers, i.e. outliers which have time varying support. We validate our approach with empirical results showing the superiority of the proposed method over competing approaches in synthetic data experiments as well as the multiple measurement face recognition problem.

* To appear in ICIP 2016
Click to Read Paper and Get Code
This letter presents a novel approach to extract reliable dense and long-range motion trajectories of articulated human in a video sequence. Compared with existing approaches that emphasize temporal consistency of each tracked point, we also consider the spatial structure of tracked points on the articulated human. We treat points as a set of vertices, and build a triangle mesh to join them in image space. The problem of extracting long-range motion trajectories is changed to the issue of consistency of mesh evolution over time. First, self-occlusion is detected by a novel mesh-based method and an adaptive motion estimation method is proposed to initialize mesh between successive frames. Furthermore, we propose an iterative algorithm to efficiently adjust vertices of mesh for a physically plausible deformation, which can meet the local rigidity of mesh and silhouette constraints. Finally, we compare the proposed method with the state-of-the-art methods on a set of challenging sequences. Evaluations demonstrate that our method achieves favorable performance in terms of both accuracy and integrity of extracted trajectories.

* IEEE Signal Processing Letters
Click to Read Paper and Get Code
We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a wide variety of applications where an unknown, non-negative quantity must be recovered from linear measurements. We present a unified framework for S-NNLS based on a rectified power exponential scale mixture prior on the sparse codes. We show that the proposed framework encompasses a large class of S-NNLS algorithms and provide a computationally efficient inference procedure based on multiplicative update rules. Such update rules are convenient for solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed approach by showing that the local minima of the objective function being optimized are sparse and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of the objective function. We then extend our framework to S-NMF, showing that our framework leads to many well known S-NMF algorithms under specific choices of prior and providing a guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points of the objective function. Finally, we study the performance of the proposed approaches on synthetic and real-world data.

* To appear in Signal Processing
Click to Read Paper and Get Code
Hand segmentation for hand-object interaction is a necessary preprocessing step in many applications such as augmented reality, medical application, and human-robot interaction. However, typical methods are based on color information which is not robust to objects with skin color, skin pigment difference, and light condition variations. Thus, we propose hand segmentation method for hand-object interaction using only a depth map. It is challenging because of the small depth difference between a hand and objects during an interaction. To overcome this challenge, we propose the two-stage random decision forest (RDF) method consisting of detecting hands and segmenting hands. To validate the proposed method, we demonstrate results on the publicly available dataset of hand segmentation for hand-object interaction. The proposed method achieves high accuracy in short processing time comparing to the other state-of-the-art methods.

Click to Read Paper and Get Code