We propose an effective multitask learning setup for reducing distant supervision noise by leveraging sentence-level supervision. We show how sentence-level supervision can be used to improve the encoding of individual sentences, and to learn which input sentences are more likely to express the relationship between a pair of entities. We also introduce a novel neural architecture for collecting signals from multiple input sentences, which combines the benefits of attention and maxpooling. The proposed method increases AUC by 10% (from 0.261 to 0.284), and outperforms recently published results on the FB-NYT dataset. Click to Read Paper
We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines. Click to Read Paper
Non-textual components such as charts, diagrams and tables provide key information in many scientific documents, but the lack of large labeled datasets has impeded the development of data-driven methods for scientific figure extraction. In this paper, we induce high-quality training labels for the task of figure extraction in a large number of scientific documents, with no human intervention. To accomplish this we leverage the auxiliary data provided in two large web collections of scientific documents (arXiv and PubMed) to locate figures and their associated captions in the rasterized PDF. We share the resulting dataset of over 5.5 million induced labels---4,000 times larger than the previous largest figure extraction dataset---with an average precision of 96.8%, to enable the development of modern data-driven methods for this task. We use this dataset to train a deep neural network for end-to-end figure detection, yielding a model that can be more easily extended to new domains compared to previous work. The model was successfully deployed in Semantic Scholar, a large-scale academic search engine, and used to extract figures in 13 million scientific documents. Click to Read Paper
We present a content-based method for recommending citations in an academic paper draft. We embed a given query document into a vector space, then use its nearest neighbors as candidates, and rerank the candidates using a discriminative model trained to distinguish between observed and unobserved citations. Unlike previous work, our method does not require metadata such as author names which can be missing, e.g., during the peer review process. Without using metadata, our method outperforms the best reported results on PubMed and DBLP datasets with relative improvements of over 18% in F1@20 and over 22% in MRR. We show empirically that, although adding metadata improves the performance on standard metrics, it favors self-citations which are less useful in a citation recommendation setup. We release an online portal (http://labs.semanticscholar.org/citeomatic/) for citation recommendation based on our method, and a new dataset OpenCorpus of 7 million research articles to facilitate future research on this task. Click to Read Paper
Type-level word embeddings use the same set of parameters to represent all instances of a word regardless of its context, ignoring the inherent lexical ambiguity in language. Instead, we embed semantic concepts (or synsets) as defined in WordNet and represent a word token in a particular context by estimating a distribution over relevant semantic concepts. We use the new, context-sensitive embeddings in a model for predicting prepositional phrase(PP) attachments and jointly learn the concept embeddings and model parameters. We show that using context-sensitive embeddings improves the accuracy of the PP attachment model by 5.4% absolute points, which amounts to a 34.4% relative reduction in errors. Click to Read Paper
Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pre- trained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers. Click to Read Paper
Unsupervised word embeddings have been shown to be valuable as features in supervised learning problems; however, their role in unsupervised problems has been less thoroughly explored. In this paper, we show that embeddings can likewise add value to the problem of unsupervised POS induction. In two representative models of POS induction, we replace multinomial distributions over the vocabulary with multivariate Gaussian distributions over word embeddings and observe consistent improvements in eight languages. We also analyze the effect of various choices while inducing word embeddings on "downstream" POS induction results. Click to Read Paper
We train one multilingual model for dependency parsing and use it to parse sentences in several languages. The parsing model uses (i) multilingual word clusters and embeddings; (ii) token-level language information; and (iii) language-specific features (fine-grained POS tags). This input representation enables the parser not only to parse effectively in multiple languages, but also to generalize across languages based on linguistic universals and typological similarities, making it more effective to learn from limited annotations. Our parser's performance compares favorably to strong baselines in a range of data scenarios, including when the target language has a large treebank, a small treebank, or no treebank for training. Click to Read Paper
We introduce new methods for estimating and evaluating embeddings of words in more than fifty languages in a single shared embedding space. Our estimation methods, multiCluster and multiCCA, use dictionaries and monolingual data; they do not require parallel data. Our new evaluation method, multiQVEC-CCA, is shown to correlate better than previous ones with two downstream tasks (text categorization and parsing). We also describe a web portal for evaluation that will facilitate further research in this area, along with open-source releases of all our methods. Click to Read Paper
Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system. Click to Read Paper
Peer reviewing is a central component in the scientific publishing process. We present the first public dataset of scientific peer reviews available for research purposes (PeerRead v1) providing an opportunity to study this important artifact. The dataset consists of 14.7K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR. The dataset also includes 10.7K textual peer reviews written by experts for a subset of the papers. We describe the data collection process and report interesting observed phenomena in the peer reviews. We also propose two novel NLP tasks based on this dataset and provide simple baseline models. In the first task, we show that simple models can predict whether a paper is accepted with up to 21% error reduction compared to the majority baseline. In the second task, we predict the numerical scores of review aspects and show that simple models can outperform the mean baseline for aspects with high variance such as 'originality' and 'impact'. Click to Read Paper
We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in www.semanticscholar.org Click to Read Paper
We describe DyNet, a toolkit for implementing neural network models based on dynamic declaration of network structure. In the static declaration strategy that is used in toolkits like Theano, CNTK, and TensorFlow, the user first defines a computation graph (a symbolic representation of the computation), and then examples are fed into an engine that executes this computation and computes its derivatives. In DyNet's dynamic declaration strategy, computation graph construction is mostly transparent, being implicitly constructed by executing procedural code that computes the network outputs, and the user is free to use different network structures for each input. Dynamic declaration thus facilitates the implementation of more complicated network architectures, and DyNet is specifically designed to allow users to implement their models in a way that is idiomatic in their preferred programming language (C++ or Python). One challenge with dynamic declaration is that because the symbolic computation graph is defined anew for every training example, its construction must have low overhead. To achieve this, DyNet has an optimized C++ backend and lightweight graph representation. Experiments show that DyNet's speeds are faster than or comparable with static declaration toolkits, and significantly faster than Chainer, another dynamic declaration toolkit. DyNet is released open-source under the Apache 2.0 license and available at http://github.com/clab/dynet. Click to Read Paper