Models, code, and papers for "Xiangbo Shu":

Region-Manipulated Fusion Networks for Pancreatitis Recognition

Jul 03, 2019
Jian Wang, Xiaoyao Li, Xiangbo Shu, Weiqin Li

This work first attempts to automatically recognize pancreatitis on CT scan images. However, different form the traditional object recognition, such pancreatitis recognition is challenging due to the fine-grained and non-rigid appearance variability of the local diseased regions. To this end, we propose a customized Region-Manipulated Fusion Networks (RMFN) to capture the key characteristics of local lesion for pancreatitis recognition. Specifically, to effectively highlight the imperceptible lesion regions, a novel region-manipulated scheme in RMFN is proposed to force the lesion regions while weaken the non-lesion regions by ceaselessly aggregating the multi-scale local information onto feature maps. The proposed scheme can be flexibly equipped into the existing neural networks, such as AlexNet and VGG. To evaluate the performance of the propose method, a real CT image database about pancreatitis is collected from hospitals \footnote{The database is available later}. And experimental results on such database well demonstrate the effectiveness of the proposed method for pancreatitis recognition.


  Click for Model/Code and Paper
Instance-Aware Hashing for Multi-Label Image Retrieval

Mar 10, 2016
Hanjiang Lai, Pan Yan, Xiangbo Shu, Yunchao Wei, Shuicheng Yan

Similarity-preserving hashing is a commonly used method for nearest neighbour search in large-scale image retrieval. For image retrieval, deep-networks-based hashing methods are appealing since they can simultaneously learn effective image representations and compact hash codes. This paper focuses on deep-networks-based hashing for multi-label images, each of which may contain objects of multiple categories. In most existing hashing methods, each image is represented by one piece of hash code, which is referred to as semantic hashing. This setting may be suboptimal for multi-label image retrieval. To solve this problem, we propose a deep architecture that learns \textbf{instance-aware} image representations for multi-label image data, which are organized in multiple groups, with each group containing the features for one category. The instance-aware representations not only bring advantages to semantic hashing, but also can be used in category-aware hashing, in which an image is represented by multiple pieces of hash codes and each piece of code corresponds to a category. Extensive evaluations conducted on several benchmark datasets demonstrate that, for both semantic hashing and category-aware hashing, the proposed method shows substantial improvement over the state-of-the-art supervised and unsupervised hashing methods.

* has been accepted as a regular paper in the IEEE Transactions on Image Processing, 2016 

  Click for Model/Code and Paper
Personalized Age Progression with Aging Dictionary

Oct 22, 2015
Xiangbo Shu, Jinhui Tang, Hanjiang Lai, Luoqi Liu, Shuicheng Yan

In this paper, we aim to automatically render aging faces in a personalized way. Basically, a set of age-group specific dictionaries are learned, where the dictionary bases corresponding to the same index yet from different dictionaries form a particular aging process pattern cross different age groups, and a linear combination of these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each subject may have extra personalized facial characteristics, e.g. mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular subject, yet much easier and more practical to get face pairs from neighboring age groups. Thus a personality-aware coupled reconstruction loss is utilized to learn the dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of our proposed solution over other state-of-the-arts in term of personalized aging progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.

* in International Conference on Computer Vision, 2015 

  Click for Model/Code and Paper
Spatiotemporal Co-attention Recurrent Neural Networks for Human-Skeleton Motion Prediction

Oct 01, 2019
Xiangbo Shu, Liyan Zhang, Guo-Jun Qi, Wei Liu, Jinhui Tang

Human motion prediction aims to generate future motions based on the observed human motions. Witnessing the success of Recurrent Neural Networks (RNN) in modeling the sequential data, recent works utilize RNN to model human-skeleton motion on the observed motion sequence and predict future human motions. However, these methods did not consider the existence of the spatial coherence among joints and the temporal evolution among skeletons, which reflects the crucial characteristics of human motion in spatiotemporal space. To this end, we propose a novel Skeleton-joint Co-attention Recurrent Neural Networks (SC-RNN) to capture the spatial coherence among joints, and the temporal evolution among skeletons simultaneously on a skeleton-joint co-attention feature map in spatiotemporal space. First, a skeleton-joint feature map is constructed as the representation of the observed motion sequence. Second, we design a new Skeleton-joint Co-Attention (SCA) mechanism to dynamically learn a skeleton-joint co-attention feature map of this skeleton-joint feature map, which can refine the useful observed motion information to predict one future motion. Third, a variant of GRU embedded with SCA collaboratively models the human-skeleton motion and human-joint motion in spatiotemporal space by regarding the skeleton-joint co-attention feature map as the motion context. Experimental results on human motion prediction demonstrate the proposed method outperforms the related methods.


  Click for Model/Code and Paper
Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition

Nov 01, 2018
Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Wei Liu, Jian Yang

In this paper, we aim to address the problem of human interaction recognition in videos by exploring the long-term inter-related dynamics among multiple persons. Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamic for single-person action recognition due to its ability of capturing the temporal motion information in a range. However, existing RNN models focus only on capturing the dynamics of human interaction by simply combining all dynamics of individuals or modeling them as a whole. Such models neglect the inter-related dynamics of how human interactions change over time. To this end, we propose a novel Hierarchical Long Short-Term Concurrent Memory (H-LSTCM) to model the long-term inter-related dynamics among a group of persons for recognizing the human interactions. Specifically, we first feed each person's static features into a Single-Person LSTM to learn the single-person dynamic. Subsequently, the outputs of all Single-Person LSTM units are fed into a novel Concurrent LSTM (Co-LSTM) unit, which mainly consists of multiple sub-memory units, a new cell gate and a new co-memory cell. In a Co-LSTM unit, each sub-memory unit stores individual motion information, while this Co-LSTM unit selectively integrates and stores inter-related motion information between multiple interacting persons from multiple sub-memory units via the cell gate and co-memory cell, respectively. Extensive experiments on four public datasets validate the effectiveness of the proposed H-LSTCM by comparing against baseline and state-of-the-art methods.


  Click for Model/Code and Paper
Social Anchor-Unit Graph Regularized Tensor Completion for Large-Scale Image Retagging

Oct 03, 2018
Jinhui Tang, Xiangbo Shu, Zechao Li, Yu-Gang Jiang, Qi Tian

Image retagging aims to improve tag quality of social images by refining their original tags or assigning new high-quality tags. Recent approaches simultaneously explore visual, user and tag information to improve the performance of image retagging by constructing and exploring an image-tag-user graph. However, such methods will become computationally infeasible with the rapidly increasing number of images, tags and users. It has been proven that Anchor Graph Regularization (AGR) can significantly accelerate large-scale graph learning model by exploring only a small number of anchor points. Inspired by this, we propose a novel Social anchor-Unit GrAph Regularized Tensor Completion (SUGAR-TC) method to effectively refine the tags of social images, which is insensitive to the scale of the applied data. First, we construct an anchor-unit graph across multiple domains (e.g., image and user domains) rather than traditional anchor graph in a single domain. Second, a tensor completion based on SUGAR is implemented on the original image-tag-user tensor to refine the tags of the anchor images. Third, we efficiently assign tags to non-anchor images by leveraging the relationship between the non-anchor images and the anchor units. Experimental results on a real-world social image database well demonstrate the effectiveness of SUGAR-TC, outperforming several related methods.


  Click for Model/Code and Paper
Deep Ordinal Hashing with Spatial Attention

May 07, 2018
Lu Jin, Xiangbo Shu, Kai Li, Zechao Li, Guo-Jun Qi, Jinhui Tang

Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods.


  Click for Model/Code and Paper
Personalized Age Progression with Bi-level Aging Dictionary Learning

Jun 04, 2017
Xiangbo Shu, Jinhui Tang, Zechao Li, Hanjiang Lai, Liyan Zhang, Shuicheng Yan

Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g. mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.

* Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence 

  Click for Model/Code and Paper
Concurrence-Aware Long Short-Term Sub-Memories for Person-Person Action Recognition

Jun 03, 2017
Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Yan Song, Zechao Li, Liyan Zhang

Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamics for single-person action recognition due to its ability of modeling the temporal information in various ranges of dynamic contexts. However, existing RNN models only focus on capturing the temporal dynamics of the person-person interactions by naively combining the activity dynamics of individuals or modeling them as a whole. This neglects the inter-related dynamics of how person-person interactions change over time. To this end, we propose a novel Concurrence-Aware Long Short-Term Sub-Memories (Co-LSTSM) to model the long-term inter-related dynamics between two interacting people on the bounding boxes covering people. Specifically, for each frame, two sub-memory units store individual motion information, while a concurrent LSTM unit selectively integrates and stores inter-related motion information between interacting people from these two sub-memory units via a new co-memory cell. Experimental results on the BIT and UT datasets show the superiority of Co-LSTSM compared with the state-of-the-art methods.


  Click for Model/Code and Paper
Face Aging with Contextual Generative Adversarial Nets

Feb 01, 2018
Si Liu, Yao Sun, Defa Zhu, Renda Bao, Wei Wang, Xiangbo Shu, Shuicheng Yan

Face aging, which renders aging faces for an input face, has attracted extensive attention in the multimedia research. Recently, several conditional Generative Adversarial Nets (GANs) based methods have achieved great success. They can generate images fitting the real face distributions conditioned on each individual age group. However, these methods fail to capture the transition patterns, e.g., the gradual shape and texture changes between adjacent age groups. In this paper, we propose a novel Contextual Generative Adversarial Nets (C-GANs) to specifically take it into consideration. The C-GANs consists of a conditional transformation network and two discriminative networks. The conditional transformation network imitates the aging procedure with several specially designed residual blocks. The age discriminative network guides the synthesized face to fit the real conditional distribution. The transition pattern discriminative network is novel, aiming to distinguish the real transition patterns with the fake ones. It serves as an extra regularization term for the conditional transformation network, ensuring the generated image pairs to fit the corresponding real transition pattern distribution. Experimental results demonstrate the proposed framework produces appealing results by comparing with the state-of-the-art and ground truth. We also observe performance gain for cross-age face verification.

* accepted at ACM Multimedia 2017 

  Click for Model/Code and Paper