Models, code, and papers for "Xiaochen Yang":

Metric Learning via Maximizing the Lipschitz Margin Ratio

Feb 09, 2018
Mingzhi Dong, Xiaochen Yang, Yang Wu, Jing-Hao Xue

In this paper, we propose the Lipschitz margin ratio and a new metric learning framework for classification through maximizing the ratio. This framework enables the integration of both the inter-class margin and the intra-class dispersion, as well as the enhancement of the generalization ability of a classifier. To introduce the Lipschitz margin ratio and its associated learning bound, we elaborate the relationship between metric learning and Lipschitz functions, as well as the representability and learnability of the Lipschitz functions. After proposing the new metric learning framework based on the introduced Lipschitz margin ratio, we also prove that some well known metric learning algorithms can be shown as special cases of the proposed framework. In addition, we illustrate the framework by implementing it for learning the squared Mahalanobis metric, and by demonstrating its encouraging results on eight popular datasets of machine learning.


  Click for Model/Code and Paper
Learning Local Metrics and Influential Regions for Classification

Feb 09, 2018
Mingzhi Dong, Yujiang Wang, Xiaochen Yang, Jing-Hao Xue

The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning method for distance-based classification. Our key intuition is to partition the metric space into influential regions and a background region, and then regulate the effectiveness of each local metric to be within the related influential regions. We learn local metrics and influential regions to reduce the empirical hinge loss, and regularize the parameters on the basis of a resultant learning bound. Encouraging experimental results are obtained from various public and popular data sets.


  Click for Model/Code and Paper
Domain-Adversarial Multi-Task Framework for Novel Therapeutic Property Prediction of Compounds

Sep 28, 2018
Lingwei Xie, Song He, Shu Yang, Boyuan Feng, Kun Wan, Zhongnan Zhang, Xiaochen Bo, Yufei Ding

With the rapid development of high-throughput technologies, parallel acquisition of large-scale drug-informatics data provides huge opportunities to improve pharmaceutical research and development. One significant application is the purpose prediction of small molecule compounds, aiming to specify therapeutic properties of extensive purpose-unknown compounds and to repurpose novel therapeutic properties of FDA-approved drugs. Such problem is very challenging since compound attributes contain heterogeneous data with various feature patterns such as drug fingerprint, drug physicochemical property, drug perturbation gene expression. Moreover, there is complex nonlinear dependency among heterogeneous data. In this paper, we propose a novel domain-adversarial multi-task framework for integrating shared knowledge from multiple domains. The framework utilizes the adversarial strategy to effectively learn target representations and models their nonlinear dependency. Experiments on two real-world datasets illustrate that the performance of our approach obtains an obvious improvement over competitive baselines. The novel therapeutic properties of purpose-unknown compounds we predicted are mostly reported or brought to the clinics. Furthermore, our framework can integrate various attributes beyond the three domains examined here and can be applied in the industry for screening the purpose of huge amounts of as yet unidentified compounds. Source codes of this paper are available on Github.

* 9 pages, 6 figures 

  Click for Model/Code and Paper