Models, code, and papers for "Xiaodong Wang":

Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

Dec 16, 2018
Zhao Chen, Xiaodong Wang

Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies.


  Click for Model/Code and Paper
Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

Jul 25, 2017
Morteza Ashraphijuo, Xiaodong Wang

Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model.


  Click for Model/Code and Paper
Fundamental Conditions for Low-CP-Rank Tensor Completion

Mar 31, 2017
Morteza Ashraphijuo, Xiaodong Wang

We consider the problem of low canonical polyadic (CP) rank tensor completion. A completion is a tensor whose entries agree with the observed entries and its rank matches the given CP rank. We analyze the manifold structure corresponding to the tensors with the given rank and define a set of polynomials based on the sampling pattern and CP decomposition. Then, we show that finite completability of the sampled tensor is equivalent to having a certain number of algebraically independent polynomials among the defined polynomials. Our proposed approach results in characterizing the maximum number of algebraically independent polynomials in terms of a simple geometric structure of the sampling pattern, and therefore we obtain the deterministic necessary and sufficient condition on the sampling pattern for finite completability of the sampled tensor. Moreover, assuming that the entries of the tensor are sampled independently with probability $p$ and using the mentioned deterministic analysis, we propose a combinatorial method to derive a lower bound on the sampling probability $p$, or equivalently, the number of sampled entries that guarantees finite completability with high probability. We also show that the existing result for the matrix completion problem can be used to obtain a loose lower bound on the sampling probability $p$. In addition, we obtain deterministic and probabilistic conditions for unique completability. It is seen that the number of samples required for finite or unique completability obtained by the proposed analysis on the CP manifold is orders-of-magnitude lower than that is obtained by the existing analysis on the Grassmannian manifold.

* arXiv admin note: text overlap with arXiv:1703.07698 

  Click for Model/Code and Paper
Characterization of Deterministic and Probabilistic Sampling Patterns for Finite Completability of Low Tensor-Train Rank Tensor

Mar 22, 2017
Morteza Ashraphijuo, Xiaodong Wang

In this paper, we analyze the fundamental conditions for low-rank tensor completion given the separation or tensor-train (TT) rank, i.e., ranks of unfoldings. We exploit the algebraic structure of the TT decomposition to obtain the deterministic necessary and sufficient conditions on the locations of the samples to ensure finite completability. Specifically, we propose an algebraic geometric analysis on the TT manifold that can incorporate the whole rank vector simultaneously in contrast to the existing approach based on the Grassmannian manifold that can only incorporate one rank component. Our proposed technique characterizes the algebraic independence of a set of polynomials defined based on the sampling pattern and the TT decomposition, which is instrumental to obtaining the deterministic condition on the sampling pattern for finite completability. In addition, based on the proposed analysis, assuming that the entries of the tensor are sampled independently with probability $p$, we derive a lower bound on the sampling probability $p$, or equivalently, the number of sampled entries that ensures finite completability with high probability. Moreover, we also provide the deterministic and probabilistic conditions for unique completability.

* arXiv admin note: text overlap with arXiv:1612.01597 

  Click for Model/Code and Paper
Deterministic and Probabilistic Conditions for Finite Completability of Low-Tucker-Rank Tensor

Feb 28, 2018
Morteza Ashraphijuo, Vaneet Aggarwal, Xiaodong Wang

We investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries, for finite completability of a low-rank tensor given some components of its Tucker rank. In order to find the deterministic necessary and sufficient conditions, we propose an algebraic geometric analysis on the Tucker manifold, which allows us to incorporate multiple rank components in the proposed analysis in contrast with the conventional geometric approaches on the Grassmannian manifold. This analysis characterizes the algebraic independence of a set of polynomials defined based on the sampling pattern, which is closely related to finite completion. Probabilistic conditions are then studied and a lower bound on the sampling probability is given, which guarantees that the proposed deterministic conditions on the sampling patterns for finite completability hold with high probability. Furthermore, using the proposed geometric approach for finite completability, we propose a sufficient condition on the sampling pattern that ensures there exists exactly one completion for the sampled tensor.


  Click for Model/Code and Paper
On Deterministic Sampling Patterns for Robust Low-Rank Matrix Completion

Dec 05, 2017
Morteza Ashraphijuo, Vaneet Aggarwal, Xiaodong Wang

In this letter, we study the deterministic sampling patterns for the completion of low rank matrix, when corrupted with a sparse noise, also known as robust matrix completion. We extend the recent results on the deterministic sampling patterns in the absence of noise based on the geometric analysis on the Grassmannian manifold. A special case where each column has a certain number of noisy entries is considered, where our probabilistic analysis performs very efficiently. Furthermore, assuming that the rank of the original matrix is not given, we provide an analysis to determine if the rank of a valid completion is indeed the actual rank of the data corrupted with sparse noise by verifying some conditions.

* Accepted to IEEE Signal Processing Letters 

  Click for Model/Code and Paper
Rank Determination for Low-Rank Data Completion

Jul 03, 2017
Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal

Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including single-view matrix, multi-view matrix, CP tensor, tensor-train tensor and Tucker tensor. For each of these data models, we provide an upper bound on the rank when an arbitrary low-rank completion is given. We characterize these bounds both deterministically, i.e., with probability one given that the sampling pattern satisfies certain combinatorial properties, and probabilistically, i.e., with high probability given that the sampling probability is above some threshold. Moreover, for both single-view matrix and CP tensor, we are able to show that the obtained upper bound is exactly equal to the unknown rank if the lowest-rank completion is given. Furthermore, we provide numerical experiments for the case of single-view matrix, where we use nuclear norm minimization to find a low-rank completion of the sampled data and we observe that in most of the cases the proposed upper bound on the rank is equal to the true rank.

* Journal of Machine Learning Research, 18(98), pp. 1-29, Sept 2017 

  Click for Model/Code and Paper
Deterministic and Probabilistic Conditions for Finite Completability of Low-rank Multi-View Data

Apr 26, 2017
Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal

We consider the multi-view data completion problem, i.e., to complete a matrix $\mathbf{U}=[\mathbf{U}_1|\mathbf{U}_2]$ where the ranks of $\mathbf{U},\mathbf{U}_1$, and $\mathbf{U}_2$ are given. In particular, we investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries for finite completability of such a multi-view data given the corresponding rank constraints. In contrast with the existing analysis on Grassmannian manifold for a single-view matrix, i.e., conventional matrix completion, we propose a geometric analysis on the manifold structure for multi-view data to incorporate more than one rank constraint. We provide a deterministic necessary and sufficient condition on the sampling pattern for finite completability. We also give a probabilistic condition in terms of the number of samples per column that guarantees finite completability with high probability. Finally, using the developed tools, we derive the deterministic and probabilistic guarantees for unique completability.


  Click for Model/Code and Paper
Deep Reinforcement Learning for Unmanned Aerial Vehicle-Assisted Vehicular Networks

Jul 27, 2019
Ming Zhu, Xiao-Yang Liu, Xiaodong Wang

Unmanned aerial vehicles (UAVs) are envisioned to complement the 5G communication infrastructure in future smart cities. Hot spots easily appear in road intersections, where effective communication among vehicles is challenging. UAVs may serve as relays with the advantages of low price, easy deployment, line-of-sight links, and flexible mobility. In this paper, we study a UAV-assisted vehicular network where the UAV jointly adjusts its transmission power and bandwidth allocation under 3D flight to maximize the total throughput. First, we formulate a Markov Decision Process (MDP) problem by modeling the mobility of the UAV/vehicles and the state transitions. Secondly, we solve the target problem using a deep reinforcement learning method, namely, the deep deterministic policy gradient, and propose three solutions with different control objectives. Then we extend the proposed solutions by considering the energy consumption of 3D flight. Thirdly, in a simplified model with small state space and action space, we verify the optimality of proposed algorithms. Comparing with two baseline schemes, we demonstrate the effectiveness of proposed algorithms in a realistic model.

* 13 pages, 13 figures 

  Click for Model/Code and Paper
Deep Reinforcement Learning for Unmanned Aerial Vehicle-Assisted Vehicular Networks in Smart Cities

Jul 09, 2019
Ming Zhu, Xiao-Yang Liu, Xiaodong Wang

Unmanned aerial vehicles (UAVs) are envisioned to complement the 5G communication infrastructure in future smart cities. Hot spots easily appear in road intersections, where effective communication among vehicles is challenging. UAVs may serve as relays with the advantages of low price, easy deployment, line-of-sight links, and flexible mobility. In this paper, we study a UAV-assisted vehicular network where the UAV jointly adjusts its transmission power and bandwidth allocation under 3D flight to maximize the total throughput. First, we formulate a Markov Decision Process (MDP) problem by modeling the mobility of the UAV/vehicles and the state transitions. Secondly, we solve the target problem using a deep reinforcement learning method, namely, the deep deterministic policy gradient, and propose three solutions with different control objectives. Then we extend the proposed solutions considering of the energy consumption of 3D flight. Thirdly, in a simplified model with small state space and action space, we verify the optimality of proposed algorithms. Comparing with two baseline schemes, we demonstrate the effectiveness of proposed algorithms in a realistic model.

* 12 pages, 13 figures 

  Click for Model/Code and Paper
Real-Time Nonparametric Anomaly Detection in High-Dimensional Settings

Sep 14, 2018
Mehmet Necip Kurt, Yasin Yilmaz, Xiaodong Wang

Timely and reliable detection of abrupt anomalies, e.g., faults, intrusions/attacks, is crucial for real-time monitoring and security of many modern systems such as the smart grid and the Internet of Things (IoT) networks that produce high-dimensional data. With this goal, we propose effective and scalable algorithms for real-time anomaly detection in high-dimensional settings. Our proposed algorithms are nonparametric (model-free) as both the nominal and anomalous multivariate data distributions are assumed to be unknown. We extract useful univariate summary statistics and perform the anomaly detection task in a single-dimensional space. We model anomalies as persistent outliers and propose to detect them via a cumulative sum (CUSUM)-like algorithm. In case the observed data stream has a low intrinsic dimensionality, we find a low-dimensional submanifold in which the nominal data are embedded and then evaluate whether the sequentially acquired data persistently deviate from the nominal submanifold. Further, in the general case, we determine an acceptance region for nominal data via the Geometric Entropy Minimization (GEM) method and then evaluate whether the sequentially observed data persistently fall outside the acceptance region. We provide an asymptotic lower bound on the average false alarm period of the proposed CUSUM-like algorithm. Moreover, we provide a sufficient condition to asymptotically guarantee that the decision statistic of the proposed algorithm does not diverge in the absence of anomalies. Numerical studies illustrate the effectiveness of the proposed schemes in quick and accurate detection of changes/anomalies in a variety of high-dimensional settings.


  Click for Model/Code and Paper
An Online Ride-Sharing Path Planning Strategy for Public Vehicle Systems

Dec 27, 2017
Ming Zhu, Xiao-Yang Liu, Xiaodong Wang

As efficient traffic-management platforms, public vehicle (PV) systems are envisioned to be a promising approach to solving traffic congestions and pollutions for future smart cities. PV systems provide online/dynamic peer-to-peer ride-sharing services with the goal of serving sufficient number of customers with minimum number of vehicles and lowest possible cost. A key component of the PV system is the online ride-sharing scheduling strategy. In this paper, we propose an efficient path planning strategy that focuses on a limited potential search area for each vehicle by filtering out the requests that violate passenger service quality level, so that the global search is reduced to local search. We analyze the performance of the proposed solution such as reduction ratio of computational complexity. Simulations based on the Manhattan taxi data set show that, the computing time is reduced by 22% compared with the exhaustive search method under the same service quality performance.

* 12 pages 

  Click for Model/Code and Paper
Interactive Attention Networks for Aspect-Level Sentiment Classification

Sep 04, 2017
Dehong Ma, Sujian Li, Xiaodong Zhang, Houfeng Wang

Aspect-level sentiment classification aims at identifying the sentiment polarity of specific target in its context. Previous approaches have realized the importance of targets in sentiment classification and developed various methods with the goal of precisely modeling their contexts via generating target-specific representations. However, these studies always ignore the separate modeling of targets. In this paper, we argue that both targets and contexts deserve special treatment and need to be learned their own representations via interactive learning. Then, we propose the interactive attention networks (IAN) to interactively learn attentions in the contexts and targets, and generate the representations for targets and contexts separately. With this design, the IAN model can well represent a target and its collocative context, which is helpful to sentiment classification. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our model.

* Accepted by IJCAI 2017 

  Click for Model/Code and Paper
Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding

Nov 09, 2019
Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He, Bowen Zhou

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.


  Click for Model/Code and Paper
Online Cyber-Attack Detection in Smart Grid: A Reinforcement Learning Approach

Sep 14, 2018
Mehmet Necip Kurt, Oyetunji Ogundijo, Chong Li, Xiaodong Wang

Early detection of cyber-attacks is crucial for a safe and reliable operation of the smart grid. In the literature, outlier detection schemes making sample-by-sample decisions and online detection schemes requiring perfect attack models have been proposed. In this paper, we formulate the online attack/anomaly detection problem as a partially observable Markov decision process (POMDP) problem and propose a universal robust online detection algorithm using the framework of model-free reinforcement learning (RL) for POMDPs. Numerical studies illustrate the effectiveness of the proposed RL-based algorithm in timely and accurate detection of cyber-attacks targeting the smart grid.


  Click for Model/Code and Paper
Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models

Jun 11, 2018
Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, Yuxiong He

Neural language models (NLMs) have recently gained a renewed interest by achieving state-of-the-art performance across many natural language processing (NLP) tasks. However, NLMs are very computationally demanding largely due to the computational cost of the softmax layer over a large vocabulary. We observe that, in decoding of many NLP tasks, only the probabilities of the top-K hypotheses need to be calculated preciously and K is often much smaller than the vocabulary size. This paper proposes a novel softmax layer approximation algorithm, called Fast Graph Decoder (FGD), which quickly identifies, for a given context, a set of K words that are most likely to occur according to a NLM. We demonstrate that FGD reduces the decoding time by an order of magnitude while attaining close to the full softmax baseline accuracy on neural machine translation and language modeling tasks. We also prove the theoretical guarantee on the softmax approximation quality.


  Click for Model/Code and Paper
Image Segmentation Based on the Self-Balancing Mechanism in Virtual 3D Elastic Mesh

Oct 10, 2016
Xiaodong Zhuang, N. E. Mastorakis, Jieru Chi, Hanping Wang

In this paper, a novel model of 3D elastic mesh is presented for image segmentation. The model is inspired by stress and strain in physical elastic objects, while the repulsive force and elastic force in the model are defined slightly different from the physical force to suit the segmentation problem well. The self-balancing mechanism in the model guarantees the stability of the method in segmentation. The shape of the elastic mesh at balance state is used for region segmentation, in which the sign distribution of the points'z coordinate values is taken as the basis for segmentation. The effectiveness of the proposed method is proved by analysis and experimental results for both test images and real world images.

* WSEAS Transactions on Computers, pp. 805-818, Volume 14, 2015 
* 14 pages, 21 figures 

  Click for Model/Code and Paper