Research papers and code for "Xiaohu Guo":
We present a novel approach to reconstruct RGB-D indoor scene with plane primitives. Our approach takes as input a RGB-D sequence and a dense coarse mesh reconstructed by some 3D reconstruction method on the sequence, and generate a lightweight, low-polygonal mesh with clear face textures and sharp features without losing geometry details from the original scene. To achieve this, we firstly partition the input mesh with plane primitives, simplify it into a lightweight mesh next, then optimize plane parameters, camera poses and texture colors to maximize the photometric consistency across frames, and finally optimize mesh geometry to maximize consistency between geometry and planes. Compared to existing planar reconstruction methods which only cover large planar regions in the scene, our method builds the entire scene by adaptive planes without losing geometry details and preserves sharp features in the final mesh. We demonstrate the effectiveness of our approach by applying it onto several RGB-D scans and comparing it to other state-of-the-art reconstruction methods.

* International Conference on 3D Vision (2018) 533--541
* in International Conference on 3D Vision 2018; Models and Code: see https://github.com/chaowang15/plane-opt-rgbd. arXiv admin note: text overlap with arXiv:1905.08853
Click to Read Paper and Get Code
We propose a novel approach to reconstruct RGB-D indoor scene based on plane primitives. Our approach takes as input a RGB-D sequence and a dense coarse mesh reconstructed from it, and generates a lightweight, low-polygonal mesh with clear face textures and sharp features without losing geometry details from the original scene. Compared to existing methods which only cover large planar regions in the scene, our method builds the entire scene by adaptive planes without losing geometry details and also preserves sharp features in the mesh. Experiments show that our method is more efficient to generate textured mesh from RGB-D data than state-of-the-arts.

* In the SUMO Workshop of CVPR 2019
Click to Read Paper and Get Code
This paper proposes a real-time dynamic scene reconstruction method capable of reproducing the motion, geometry, and segmentation simultaneously given live depth stream from a single RGB-D camera. Our approach fuses geometry frame by frame and uses a segmentation-enhanced node graph structure to drive the deformation of geometry in registration step. A two-level node motion optimization is proposed. The optimization space of node motions and the range of physically-plausible deformations are largely reduced by taking advantage of the articulated motion prior, which is solved by an efficient node graph segmentation method. Compared to previous fusion-based dynamic scene reconstruction methods, our experiments show robust and improved reconstruction results for tangential and occluded motions.

* European Conference on Computer Vision 2018
Click to Read Paper and Get Code
We present a novel method of integrating motion and appearance cues for foreground object segmentation in unconstrained videos. Unlike conventional methods encoding motion and appearance patterns individually, our method puts particular emphasis on their mutual assistance. Specifically, we propose using an interactively constrained encoding (ICE) scheme to incorporate motion and appearance patterns into a graph that leads to a spatiotemporal energy optimization. The reason of utilizing ICE is that both motion and appearance cues for the same target share underlying correlative structure, thus can be exploited in a deeply collaborative manner. We perform ICE not only in the initialization but also in the refinement stage of a two-layer framework for object segmentation. This scheme allows our method to consistently capture structural patterns about object perceptions throughout the whole framework. Our method can be operated on superpixels instead of raw pixels to reduce the number of graph nodes by two orders of magnitude. Moreover, we propose to partially explore the multi-object localization problem with inter-occlusion by weighted bipartite graph matching. Comprehensive experiments on three benchmark datasets (i.e., SegTrack, MOViCS, and GaTech) demonstrate the effectiveness of our approach compared with extensive state-of-the-art methods.

* 11 pages, 7 figures
Click to Read Paper and Get Code
In this paper, the distributed edge caching problem in fog radio access networks (F-RANs) is investigated. By considering the unknown spatio-temporal content popularity and user preference, a user request model based on hidden Markov process is proposed to characterize the fluctuant spatio-temporal traffic demands in F-RANs. Then, the Q-learning method based on the reinforcement learning (RL) framework is put forth to seek the optimal caching policy in a distributed manner, which enables fog access points (F-APs) to learn and track the potential dynamic process without extra communications cost. Furthermore, we propose a more efficient Q-learning method with value function approximation (Q-VFA-learning) to reduce complexity and accelerate convergence. Simulation results show that the performance of our proposed method is superior to those of the traditional methods.

* 6 pages, 6 figures, this work has been accepted by IEEE VTC 2019 Spring
Click to Read Paper and Get Code