Research papers and code for "Xiaojuan Qi":
We present a semi-parametric approach to photographic image synthesis from semantic layouts. The approach combines the complementary strengths of parametric and nonparametric techniques. The nonparametric component is a memory bank of image segments constructed from a training set of images. Given a novel semantic layout at test time, the memory bank is used to retrieve photographic references that are provided as source material to a deep network. The synthesis is performed by a deep network that draws on the provided photographic material. Experiments on multiple semantic segmentation datasets show that the presented approach yields considerably more realistic images than recent purely parametric techniques. The results are shown in the supplementary video at https://youtu.be/U4Q98lenGLQ

* Published at the Conference on Computer Vision and Pattern Recognition (CVPR 2018)
Click to Read Paper and Get Code
The morphology of glands has been used routinely by pathologists to assess the malignancy degree of adenocarcinomas. Accurate segmentation of glands from histology images is a crucial step to obtain reliable morphological statistics for quantitative diagnosis. In this paper, we proposed an efficient deep contour-aware network (DCAN) to solve this challenging problem under a unified multi-task learning framework. In the proposed network, multi-level contextual features from the hierarchical architecture are explored with auxiliary supervision for accurate gland segmentation. When incorporated with multi-task regularization during the training, the discriminative capability of intermediate features can be further improved. Moreover, our network can not only output accurate probability maps of glands, but also depict clear contours simultaneously for separating clustered objects, which further boosts the gland segmentation performance. This unified framework can be efficient when applied to large-scale histopathological data without resorting to additional steps to generate contours based on low-level cues for post-separating. Our method won the 2015 MICCAI Gland Segmentation Challenge out of 13 competitive teams, surpassing all the other methods by a significant margin.

Click to Read Paper and Get Code
Adaptive inference is a promising technique to improve the computational efficiency of deep models at test time. In contrast to static models which use the same computation graph for all instances, adaptive networks can dynamically adjust their structure conditioned on each input. While existing research on adaptive inference mainly focuses on designing more advanced architectures, this paper investigates how to train such networks more effectively. Specifically, we consider a typical adaptive deep network with multiple intermediate classifiers. We present three techniques to improve its training efficacy from two aspects: 1) a Gradient Equilibrium algorithm to resolve the conflict of learning of different classifiers; 2) an Inline Subnetwork Collaboration approach and a One-for-all Knowledge Distillation algorithm to enhance the collaboration among classifiers. On multiple datasets (CIFAR-10, CIFAR-100 and ImageNet), we show that the proposed approach consistently leads to further improved efficiency on top of state-of-the-art adaptive deep networks.

Click to Read Paper and Get Code
In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.

* Accepted in NIPS 2018
Click to Read Paper and Get Code
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve high-quality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.

* ECCV 2018
Click to Read Paper and Get Code
Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction tasks. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

* CVPR 2017
Click to Read Paper and Get Code
Image completion has achieved significant progress due to advances in generative adversarial networks (GANs). Albeit natural-looking, the synthesized contents still lack details, especially for scenes with complex structures or images with large holes. This is because there exists a gap between low-level reconstruction loss and high-level adversarial loss. To address this issue, we introduce a perceptual network to provide mid-level guidance, which measures the semantical similarity between the synthesized and original contents in a similarity-enhanced space. We conduct a detailed analysis on the effects of different losses and different levels of perceptual features in image completion, showing that there exist complementarity between adversarial training and perceptual features. By combining them together, our model can achieve nearly seamless fusion results in an end-to-end manner. Moreover, we design an effective lightweight generator architecture, which can achieve effective image inpainting with far less parameters. Evaluated on CelebA Face and Paris StreetView dataset, our proposed method significantly outperforms existing methods.

* 9 pages plus 2-page supplement
Click to Read Paper and Get Code
Liver cancer is one of the leading causes of cancer death. To assist doctors in hepatocellular carcinoma diagnosis and treatment planning, an accurate and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, fully convolutional neural networks (FCNs), including 2D and 3D FCNs, serve as the back-bone in many volumetric image segmentation. However, 2D convolutions can not fully leverage the spatial information along the third dimension while 3D convolutions suffer from high computational cost and GPU memory consumption. To address these issues, we propose a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2D DenseUNet for efficiently extracting intra-slice features and a 3D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation. We formulate the learning process of H-DenseUNet in an end-to-end manner, where the intra-slice representations and inter-slice features can be jointly optimized through a hybrid feature fusion (HFF) layer. We extensively evaluated our method on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge and 3DIRCADb Dataset. Our method outperformed other state-of-the-arts on the segmentation results of tumors and achieved very competitive performance for liver segmentation even with a single model.

* Accept for publication at IEEE Transactions on Medical Imaging
Click to Read Paper and Get Code
We explore the importance of spatial contextual information in human pose estimation. Most state-of-the-art pose networks are trained in a multi-stage manner and produce several auxiliary predictions for deep supervision. With this principle, we present two conceptually simple and yet computational efficient modules, namely Cascade Prediction Fusion (CPF) and Pose Graph Neural Network (PGNN), to exploit underlying contextual information. Cascade prediction fusion accumulates prediction maps from previous stages to extract informative signals. The resulting maps also function as a prior to guide prediction at following stages. To promote spatial correlation among joints, our PGNN learns a structured representation of human pose as a graph. Direct message passing between different joints is enabled and spatial relation is captured. These two modules require very limited computational complexity. Experimental results demonstrate that our method consistently outperforms previous methods on MPII and LSP benchmark.

Click to Read Paper and Get Code
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment of individual patients. However, achieving good inter-observer as well as intra-observer reproducibility of cancer grading is still a major challenge in modern pathology. An automated approach which quantifies the morphology of glands is a solution to the problem. This paper provides an overview to the Gland Segmentation in Colon Histology Images Challenge Contest (GlaS) held at MICCAI'2015. Details of the challenge, including organization, dataset and evaluation criteria, are presented, along with the method descriptions and evaluation results from the top performing methods.

Click to Read Paper and Get Code
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LITS) organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2016 and International Conference On Medical Image Computing Computer Assisted Intervention (MICCAI) 2017. Twenty four valid state-of-the-art liver and liver tumor segmentation algorithms were applied to a set of 131 computed tomography (CT) volumes with different types of tumor contrast levels (hyper-/hypo-intense), abnormalities in tissues (metastasectomie) size and varying amount of lesions. The submitted algorithms have been tested on 70 undisclosed volumes. The dataset is created in collaboration with seven hospitals and research institutions and manually reviewed by independent three radiologists. We found that not a single algorithm performed best for liver and tumors. The best liver segmentation algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LITS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

* conference
Click to Read Paper and Get Code
Spatio-temporal prediction is a key type of tasks in urban computing, e.g., traffic flow and air quality. Adequate data is usually a prerequisite, especially when deep learning is adopted. However, the development levels of different cities are unbalanced, and still many cities suffer from data scarcity. To address the problem, we propose a novel cross-city transfer learning method for deep spatio-temporal prediction tasks, called RegionTrans. RegionTrans aims to effectively transfer knowledge from a data-rich source city to a data-scarce target city. More specifically, we first learn an inter-city region matching function to match each target city region to a similar source city region. A neural network is designed to effectively extract region-level representation for spatio-temporal prediction. Finally, an optimization algorithm is proposed to transfer learned features from the source city to the target city with the region matching function. Using citywide crowd flow prediction as a demonstration experiment, we verify the effectiveness of RegionTrans. Results show that RegionTrans can outperform the state-of-the-art fine-tuning deep spatio-temporal prediction models by reducing up to 10.7% prediction error.

Click to Read Paper and Get Code
Ridesourcing platforms like Uber and Didi are getting more and more popular around the world. However, unauthorized ridesourcing activities taking advantages of the sharing economy can greatly impair the healthy development of this emerging industry. As the first step to regulate on-demand ride services and eliminate black market, we design a method to detect ridesourcing cars from a pool of cars based on their trajectories. Since licensed ridesourcing car traces are not openly available and may be completely missing in some cities due to legal issues, we turn to transferring knowledge from public transport open data, i.e, taxis and buses, to ridesourcing detection among ordinary vehicles. We propose a two-stage transfer learning framework. In Stage 1, we take taxi and bus data as input to learn a random forest (RF) classifier using trajectory features shared by taxis/buses and ridesourcing/other cars. Then, we use the RF to label all the candidate cars. In Stage 2, leveraging the subset of high confident labels from the previous stage as input, we further learn a convolutional neural network (CNN) classifier for ridesourcing detection, and iteratively refine RF and CNN, as well as the feature set, via a co-training process. Finally, we use the resulting ensemble of RF and CNN to identify the ridesourcing cars in the candidate pool. Experiments on real car, taxi and bus traces show that our transfer learning framework, with no need of a pre-labeled ridesourcing dataset, can achieve similar accuracy as the supervised learning methods.

Click to Read Paper and Get Code
Recently, optical neural networks (ONNs) integrated in photonic chips has received extensive attention because they are expected to implement the same pattern recognition tasks in the electronic platforms with high efficiency and low power consumption. However, the current lack of various learning algorithms to train the ONNs obstructs their further development. In this article, we propose a novel learning strategy based on neuroevolution to design and train the ONNs. Two typical neuroevolution algorithms are used to determine the hyper-parameters of the ONNs and to optimize the weights (phase shifters) in the connections. In order to demonstrate the effectiveness of the training algorithms, the trained ONNs are applied in the classification tasks for iris plants dataset, wine recognition dataset and modulation formats recognition. The calculated results exhibit that the training algorithms based on neuroevolution are competitive with other traditional learning algorithms on both accuracy and stability. Compared with previous works, we introduce an efficient training method for the ONNs and demonstrate their broad application prospects in pattern recognition, reinforcement learning and so on.

* 11 pages, 4 figures
Click to Read Paper and Get Code