Research papers and code for "Xiaoou Tang":
Face verification remains a challenging problem in very complex conditions with large variations such as pose, illumination, expression, and occlusions. This problem is exacerbated when we rely unrealistically on a single training data source, which is often insufficient to cover the intrinsically complex face variations. This paper proposes a principled multi-task learning approach based on Discriminative Gaussian Process Latent Variable Model, named GaussianFace, to enrich the diversity of training data. In comparison to existing methods, our model exploits additional data from multiple source-domains to improve the generalization performance of face verification in an unknown target-domain. Importantly, our model can adapt automatically to complex data distributions, and therefore can well capture complex face variations inherent in multiple sources. Extensive experiments demonstrate the effectiveness of the proposed model in learning from diverse data sources and generalize to unseen domain. Specifically, the accuracy of our algorithm achieves an impressive accuracy rate of 98.52% on the well-known and challenging Labeled Faces in the Wild (LFW) benchmark. For the first time, the human-level performance in face verification (97.53%) on LFW is surpassed.

* Appearing in Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), Oral Presentation
Click to Read Paper and Get Code
Clustering is indispensable for data analysis in many scientific disciplines. Detecting clusters from heavy noise remains challenging, particularly for high-dimensional sparse data. Based on graph-theoretic framework, the present paper proposes a novel algorithm to address this issue. The locally asymmetric geometries of neighborhoods between data points result in a directed similarity graph to model the structural connectivity of data points. Performing similarity propagation on this directed graph simply by its adjacency matrix powers leads to an interesting discovery, in the sense that if the in-degrees are ordered by the corresponding sorted out-degrees, they will be self-organized to be homophilic layers according to the different distributions of cluster densities, which is dubbed the Homophilic In-degree figure (the HI figure). With the HI figure, we can easily single out all cores of clusters, identify the boundary between cluster and noise, and visualize the intrinsic structures of clusters. Based on the in-degree homophily, we also develop a simple efficient algorithm of linear space complexity to cluster noisy data. Extensive experiments on toy and real-world scientific data validate the effectiveness of our algorithms.

* 10 pages, 24 figures
Click to Read Paper and Get Code
Existing deep embedding methods in vision tasks are capable of learning a compact Euclidean space from images, where Euclidean distances correspond to a similarity metric. To make learning more effective and efficient, hard sample mining is usually employed, with samples identified through computing the Euclidean feature distance. However, the global Euclidean distance cannot faithfully characterize the true feature similarity in a complex visual feature space, where the intraclass distance in a high-density region may be larger than the interclass distance in low-density regions. In this paper, we introduce a Position-Dependent Deep Metric (PDDM) unit, which is capable of learning a similarity metric adaptive to local feature structure. The metric can be used to select genuinely hard samples in a local neighborhood to guide the deep embedding learning in an online and robust manner. The new layer is appealing in that it is pluggable to any convolutional networks and is trained end-to-end. Our local similarity-aware feature embedding not only demonstrates faster convergence and boosted performance on two complex image retrieval datasets, its large margin nature also leads to superior generalization results under the large and open set scenarios of transfer learning and zero-shot learning on ImageNet 2010 and ImageNet-10K datasets.

* 9 pages, 4 figures, 2 tables. Accepted to NIPS 2016
Click to Read Paper and Get Code
Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.

* Accepted at ECCV 2016
Click to Read Paper and Get Code
Data imbalance is common in many vision tasks where one or more classes are rare. Without addressing this issue conventional methods tend to be biased toward the majority class with poor predictive accuracy for the minority class. These methods further deteriorate on small, imbalanced data that has a large degree of class overlap. In this study, we propose a novel discriminative sparse neighbor approximation (DSNA) method to ameliorate the effect of class-imbalance during prediction. Specifically, given a test sample, we first traverse it through a cost-sensitive decision forest to collect a good subset of training examples in its local neighborhood. Then we generate from this subset several class-discriminating but overlapping clusters and model each as an affine subspace. From these subspaces, the proposed DSNA iteratively seeks an optimal approximation of the test sample and outputs an unbiased prediction. We show that our method not only effectively mitigates the imbalance issue, but also allows the prediction to extrapolate to unseen data. The latter capability is crucial for achieving accurate prediction on small dataset with limited samples. The proposed imbalanced learning method can be applied to both classification and regression tasks at a wide range of imbalance levels. It significantly outperforms the state-of-the-art methods that do not possess an imbalance handling mechanism, and is found to perform comparably or even better than recent deep learning methods by using hand-crafted features only.

* 11 pages, 10 figures, In submission
Click to Read Paper and Get Code
This paper proposes to learn high-performance deep ConvNets with sparse neural connections, referred to as sparse ConvNets, for face recognition. The sparse ConvNets are learned in an iterative way, each time one additional layer is sparsified and the entire model is re-trained given the initial weights learned in previous iterations. One important finding is that directly training the sparse ConvNet from scratch failed to find good solutions for face recognition, while using a previously learned denser model to properly initialize a sparser model is critical to continue learning effective features for face recognition. This paper also proposes a new neural correlation-based weight selection criterion and empirically verifies its effectiveness in selecting informative connections from previously learned models in each iteration. When taking a moderately sparse structure (26%-76% of weights in the dense model), the proposed sparse ConvNet model significantly improves the face recognition performance of the previous state-of-the-art DeepID2+ models given the same training data, while it keeps the performance of the baseline model with only 12% of the original parameters.

Click to Read Paper and Get Code
Binary representation is desirable for its memory efficiency, computation speed and robustness. In this paper, we propose adjustable bounded rectifiers to learn binary representations for deep neural networks. While hard constraining representations across layers to be binary makes training unreasonably difficult, we softly encourage activations to diverge from real values to binary by approximating step functions. Our final representation is completely binary. We test our approach on MNIST, CIFAR10, and ILSVRC2012 dataset, and systematically study the training dynamics of the binarization process. Our approach can binarize the last layer representation without loss of performance and binarize all the layers with reasonably small degradations. The memory space that it saves may allow more sophisticated models to be deployed, thus compensating the loss. To the best of our knowledge, this is the first work to report results on current deep network architectures using complete binary middle representations. Given the learned representations, we find that the firing or inhibition of a binary neuron is usually associated with a meaningful interpretation across different classes. This suggests that the semantic structure of a neural network may be manifested through a guided binarization process.

* Under review as a conference paper at ICLR 2016
Click to Read Paper and Get Code
Visual features are of vital importance for human action understanding in videos. This paper presents a new video representation, called trajectory-pooled deep-convolutional descriptor (TDD), which shares the merits of both hand-crafted features and deep-learned features. Specifically, we utilize deep architectures to learn discriminative convolutional feature maps, and conduct trajectory-constrained pooling to aggregate these convolutional features into effective descriptors. To enhance the robustness of TDDs, we design two normalization methods to transform convolutional feature maps, namely spatiotemporal normalization and channel normalization. The advantages of our features come from (i) TDDs are automatically learned and contain high discriminative capacity compared with those hand-crafted features; (ii) TDDs take account of the intrinsic characteristics of temporal dimension and introduce the strategies of trajectory-constrained sampling and pooling for aggregating deep-learned features. We conduct experiments on two challenging datasets: HMDB51 and UCF101. Experimental results show that TDDs outperform previous hand-crafted features and deep-learned features. Our method also achieves superior performance to the state of the art on these datasets (HMDB51 65.9%, UCF101 91.5%).

* IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
Click to Read Paper and Get Code
This paper designs a high-performance deep convolutional network (DeepID2+) for face recognition. It is learned with the identification-verification supervisory signal. By increasing the dimension of hidden representations and adding supervision to early convolutional layers, DeepID2+ achieves new state-of-the-art on LFW and YouTube Faces benchmarks. Through empirical studies, we have discovered three properties of its deep neural activations critical for the high performance: sparsity, selectiveness and robustness. (1) It is observed that neural activations are moderately sparse. Moderate sparsity maximizes the discriminative power of the deep net as well as the distance between images. It is surprising that DeepID2+ still can achieve high recognition accuracy even after the neural responses are binarized. (2) Its neurons in higher layers are highly selective to identities and identity-related attributes. We can identify different subsets of neurons which are either constantly excited or inhibited when different identities or attributes are present. Although DeepID2+ is not taught to distinguish attributes during training, it has implicitly learned such high-level concepts. (3) It is much more robust to occlusions, although occlusion patterns are not included in the training set.

Click to Read Paper and Get Code
The key challenge of face recognition is to develop effective feature representations for reducing intra-personal variations while enlarging inter-personal differences. In this paper, we show that it can be well solved with deep learning and using both face identification and verification signals as supervision. The Deep IDentification-verification features (DeepID2) are learned with carefully designed deep convolutional networks. The face identification task increases the inter-personal variations by drawing DeepID2 extracted from different identities apart, while the face verification task reduces the intra-personal variations by pulling DeepID2 extracted from the same identity together, both of which are essential to face recognition. The learned DeepID2 features can be well generalized to new identities unseen in the training data. On the challenging LFW dataset, 99.15% face verification accuracy is achieved. Compared with the best deep learning result on LFW, the error rate has been significantly reduced by 67%.

Click to Read Paper and Get Code
Recent spectral clustering methods are a propular and powerful technique for data clustering. These methods need to solve the eigenproblem whose computational complexity is $O(n^3)$, where $n$ is the number of data samples. In this paper, a non-eigenproblem based clustering method is proposed to deal with the clustering problem. Its performance is comparable to the spectral clustering algorithms but it is more efficient with computational complexity $O(n^2)$. We show that with a transitive distance and an observed property, called K-means duality, our algorithm can be used to handle data sets with complex cluster shapes, multi-scale clusters, and noise. Moreover, no parameters except the number of clusters need to be set in our algorithm.

* 13 pages, 6 figures
Click to Read Paper and Get Code
We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement.

Click to Read Paper and Get Code
This survey aims at reviewing recent computer vision techniques used in the assessment of image aesthetic quality. Image aesthetic assessment aims at computationally distinguishing high-quality photos from low-quality ones based on photographic rules, typically in the form of binary classification or quality scoring. A variety of approaches has been proposed in the literature trying to solve this challenging problem. In this survey, we present a systematic listing of the reviewed approaches based on visual feature types (hand-crafted features and deep features) and evaluation criteria (dataset characteristics and evaluation metrics). Main contributions and novelties of the reviewed approaches are highlighted and discussed. In addition, following the emergence of deep learning techniques, we systematically evaluate recent deep learning settings that are useful for developing a robust deep model for aesthetic scoring. Experiments are conducted using simple yet solid baselines that are competitive with the current state-of-the-arts. Moreover, we discuss the possibility of manipulating the aesthetics of images through computational approaches. We hope that our survey could serve as a comprehensive reference source for future research on the study of image aesthetic assessment.

Click to Read Paper and Get Code
As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accelerating the current SRCNN, and propose a compact hourglass-shape CNN structure for faster and better SR. We re-design the SRCNN structure mainly in three aspects. First, we introduce a deconvolution layer at the end of the network, then the mapping is learned directly from the original low-resolution image (without interpolation) to the high-resolution one. Second, we reformulate the mapping layer by shrinking the input feature dimension before mapping and expanding back afterwards. Third, we adopt smaller filter sizes but more mapping layers. The proposed model achieves a speed up of more than 40 times with even superior restoration quality. Further, we present the parameter settings that can achieve real-time performance on a generic CPU while still maintaining good performance. A corresponding transfer strategy is also proposed for fast training and testing across different upscaling factors.

* 17 pages, 8 figures, ECCV 2016
Click to Read Paper and Get Code
Despite the recent advance of Generative Adversarial Networks (GANs) in high-fidelity image synthesis, there lacks enough understandings on how GANs are able to map the latent code sampled from a random distribution to a photo-realistic image. Previous work assumes the latent space learned by GAN follows a distributed representation but observes the vector arithmetic phenomenon of the output's semantics in latent space. In this work, we interpret the semantics hidden in the latent space of well-trained GANs. We find that the latent code for well-trained generative models, such as ProgressiveGAN and StyleGAN, actually learns a disentangled representation after some linear transformations. We make a rigorous analysis on the encoding of various semantics in the latent space as well as their properties, and then study how these semantics are correlated to each other. Based on our analysis, we propose a simple and general technique, called InterFaceGAN, for semantic face editing in latent space. Given a synthesized face, we are able to faithfully edit its various attributes such as pose, expression, age, presence of eyeglasses, without retraining the GAN model. Furthermore, we show that even the artifacts occurred in output images are able to be fixed using same approach. Extensive results suggest that learning to synthesize faces spontaneously brings a disentangled and controllable facial attribute representation

* 19 pages, 19 figures
Click to Read Paper and Get Code
Over four decades, the majority addresses the problem of optical flow estimation using variational methods. With the advance of machine learning, some recent works have attempted to address the problem using convolutional neural network (CNN) and have showed promising results. FlowNet2, the state-of-the-art CNN, requires over 160M parameters to achieve accurate flow estimation. Our LiteFlowNet2 outperforms FlowNet2 on Sintel and KITTI benchmarks, while being 25.3 times smaller in the footprint and 3.1 times faster in the running speed. LiteFlowNet2 which is built on the foundation laid by conventional methods has marked a milestone to achieve the corresponding roles as data fidelity and regularization in variational methods. We present an effective flow inference approach at each pyramid level through a novel lightweight cascaded network. It provides high flow estimation accuracy through early correction with seamless incorporation of descriptor matching. A novel flow regularization layer is used to ameliorate the issue of outliers and vague flow boundaries through a novel feature-driven local convolution. Our network also owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Comparing to our earlier work, LiteFlowNet2 improves the optical flow accuracy on Sintel clean pass by 24%, Sintel final pass by 8.9%, KITTI 2012 by 16.8%, and KITTI 2015 by 17.5%. Our network protocol and trained models will be made publicly available on https://github.com/twhui/LiteFlowNet2 .

* arXiv admin note: substantial text overlap with arXiv:1805.07036
Click to Read Paper and Get Code
The advance of Generative Adversarial Networks (GANs) enables realistic face image synthesis. However, synthesizing face images that preserve facial identity as well as have high diversity within each identity remains challenging. To address this problem, we present FaceFeat-GAN, a novel generative model that improves both image quality and diversity by using two stages. Unlike existing single-stage models that map random noise to image directly, our two-stage synthesis includes the first stage of diverse feature generation and the second stage of feature-to-image rendering. The competitions between generators and discriminators are carefully designed in both stages with different objective functions. Specially, in the first stage, they compete in the feature domain to synthesize various facial features rather than images. In the second stage, they compete in the image domain to render photo-realistic images that contain high diversity but preserve identity. Extensive experiments show that FaceFeat-GAN generates images that not only retain identity information but also have high diversity and quality, significantly outperforming previous methods.

* 12 pages and 6 figures
Click to Read Paper and Get Code
Convolutional neural networks (CNNs) have achieved great successes in many computer vision problems. Unlike existing works that designed CNN architectures to improve performance on a single task of a single domain and not generalizable, we present IBN-Net, a novel convolutional architecture, which remarkably enhances a CNN's modeling ability on one domain (e.g. Cityscapes) as well as its generalization capacity on another domain (e.g. GTA5) without finetuning. IBN-Net carefully integrates Instance Normalization (IN) and Batch Normalization (BN) as building blocks, and can be wrapped into many advanced deep networks to improve their performances. This work has three key contributions. (1) By delving into IN and BN, we disclose that IN learns features that are invariant to appearance changes, such as colors, styles, and virtuality/reality, while BN is essential for preserving content related information. (2) IBN-Net can be applied to many advanced deep architectures, such as DenseNet, ResNet, ResNeXt, and SENet, and consistently improve their performance without increasing computational cost. (3) When applying the trained networks to new domains, e.g. from GTA5 to Cityscapes, IBN-Net achieves comparable improvements as domain adaptation methods, even without using data from the target domain. With IBN-Net, we won the 1st place on the WAD 2018 Challenge Drivable Area track, with an mIoU of 86.18%.

* Accepted for publication at ECCV 2018
Click to Read Paper and Get Code
Data for face analysis often exhibit highly-skewed class distribution, i.e., most data belong to a few majority classes, while the minority classes only contain a scarce amount of instances. To mitigate this issue, contemporary deep learning methods typically follow classic strategies such as class re-sampling or cost-sensitive training. In this paper, we conduct extensive and systematic experiments to validate the effectiveness of these classic schemes for representation learning on class-imbalanced data. We further demonstrate that more discriminative deep representation can be learned by enforcing a deep network to maintain inter-cluster margins both within and between classes. This tight constraint effectively reduces the class imbalance inherent in the local data neighborhood, thus carving much more balanced class boundaries locally. We show that it is easy to deploy angular margins between the cluster distributions on a hypersphere manifold. Such learned Cluster-based Large Margin Local Embedding (CLMLE), when combined with a simple k-nearest cluster algorithm, shows significant improvements in accuracy over existing methods on both face recognition and face attribute prediction tasks that exhibit imbalanced class distribution.

* 14 pages, 10 figures, 7 tables, In submission
Click to Read Paper and Get Code
FlowNet2, the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that outperforms FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at https://github.com/twhui/LiteFlowNet .

* Accepted to CVPR 2018 (spotlight). Project page: http://mmlab.ie.cuhk.edu.hk/projects/LiteFlowNet/
Click to Read Paper and Get Code