Research papers and code for "Xiaoyong Shen":
We in this paper solve the problem of high-quality automatic real-time background cut for 720p portrait videos. We first handle the background ambiguity issue in semantic segmentation by proposing a global background attenuation model. A spatial-temporal refinement network is developed to further refine the segmentation errors in each frame and ensure temporal coherence in the segmentation map. We form an end-to-end network for training and testing. Each module is designed considering efficiency and accuracy. We build a portrait dataset, which includes 8,000 images with high-quality labeled map for training and testing. To further improve the performance, we build a portrait video dataset with 50 sequences to fine-tune video segmentation. Our framework benefits many video processing applications.

Click to Read Paper and Get Code
A 3D point cloud describes the real scene precisely and intuitively.To date how to segment diversified elements in such an informative 3D scene is rarely discussed. In this paper, we first introduce a simple and flexible framework to segment instances and semantics in point clouds simultaneously. Then, we propose two approaches which make the two tasks take advantage of each other, leading to a win-win situation. Specifically, we make instance segmentation benefit from semantic segmentation through learning semantic-aware point-level instance embedding. Meanwhile, semantic features of the points belonging to the same instance are fused together to make more accurate per-point semantic predictions. Our method largely outperforms the state-of-the-art method in 3D instance segmentation along with a significant improvement in 3D semantic segmentation. Code has been made available at: https://github.com/WXinlong/ASIS.

* Accepted by CVPR2019
Click to Read Paper and Get Code
We propose a principled convolutional neural pyramid (CNP) framework for general low-level vision and image processing tasks. It is based on the essential finding that many applications require large receptive fields for structure understanding. But corresponding neural networks for regression either stack many layers or apply large kernels to achieve it, which is computationally very costly. Our pyramid structure can greatly enlarge the field while not sacrificing computation efficiency. Extra benefit includes adaptive network depth and progressive upsampling for quasi-realtime testing on VGA-size input. Our method profits a broad set of applications, such as depth/RGB image restoration, completion, noise/artifact removal, edge refinement, image filtering, image enhancement and colorization.

Click to Read Paper and Get Code
Current image translation methods, albeit effective to produce high-quality results on various applications, still do not consider much geometric transforms. We in this paper propose spontaneous motion estimation module, along with a refinement module, to learn attribute-driven deformation between source and target domains. Extensive experiments and visualization demonstrate effectiveness of these modules. We achieve promising results in unpaired image translation tasks, and enable interesting applications with spontaneous motion basis.

Click to Read Paper and Get Code
We present a novel 3D object detection framework, named IPOD, based on raw point cloud. It seeds object proposal for each point, which is the basic element. This paradigm provides us with high recall and high fidelity of information, leading to a suitable way to process point cloud data. We design an end-to-end trainable architecture, where features of all points within a proposal are extracted from the backbone network and achieve a proposal feature for final bounding inference. These features with both context information and precise point cloud coordinates yield improved performance. We conduct experiments on KITTI dataset, evaluating our performance in terms of 3D object detection, Bird's Eye View (BEV) detection and 2D object detection. Our method accomplishes new state-of-the-art , showing great advantage on the hard set.

Click to Read Paper and Get Code
In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.

* Accepted in NIPS 2018
Click to Read Paper and Get Code
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve high-quality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.

* ECCV 2018
Click to Read Paper and Get Code
In this paper, we study an unconventional but practically meaningful reversibility problem of commonly used image filters. We broadly define filters as operations to smooth images or to produce layers via global or local algorithms. And we raise the intriguingly problem if they are reservable to the status before filtering. To answer it, we present a novel strategy to understand general filter via contraction mappings on a metric space. A very simple yet effective zero-order algorithm is proposed. It is able to practically reverse most filters with low computational cost. We present quite a few experiments in the paper and supplementary file to thoroughly verify its performance. This method can also be generalized to solve other inverse problems and enables new applications.

* 9 pages, submitted to conference
Click to Read Paper and Get Code
Estimating correspondence between two images and extracting the foreground object are two challenges in computer vision. With dual-lens smart phones, such as iPhone 7Plus and Huawei P9, coming into the market, two images of slightly different views provide us new information to unify the two topics. We propose a joint method to tackle them simultaneously via a joint fully connected conditional random field (CRF) framework. The regional correspondence is used to handle textureless regions in matching and make our CRF system computationally efficient. Our method is evaluated over 2,000 new image pairs, and produces promising results on challenging portrait images.

Click to Read Paper and Get Code
Analogical reasoning is effective in capturing linguistic regularities. This paper proposes an analogical reasoning task on Chinese. After delving into Chinese lexical knowledge, we sketch 68 implicit morphological relations and 28 explicit semantic relations. A big and balanced dataset CA8 is then built for this task, including 17813 questions. Furthermore, we systematically explore the influences of vector representations, context features, and corpora on analogical reasoning. With the experiments, CA8 is proved to be a reliable benchmark for evaluating Chinese word embeddings.

* Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 138--143, 2018
Click to Read Paper and Get Code
In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-network-based approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-the-arts, both quantitatively and qualitatively.

* 9 pages
Click to Read Paper and Get Code
Irregular scene text, which has complex layout in 2D space, is challenging to most previous scene text recognizers. Recently, some irregular scene text recognizers either rectify the irregular text to regular text image with approximate 1D layout or transform the 2D image feature map to 1D feature sequence. Though these methods have achieved good performance, the robustness and accuracy are still limited due to the loss of spatial information in the process of 2D to 1D transformation. Different from all of previous, we in this paper propose a framework which transforms the irregular text with 2D layout to character sequence directly via 2D attentional scheme. We utilize a relation attention module to capture the dependencies of feature maps and a parallel attention module to decode all characters in parallel, which make our method more effective and efficient. Extensive experiments on several public benchmarks as well as our collected multi-line text dataset show that our approach is effective to recognize regular and irregular scene text and outperforms previous methods both in accuracy and speed.

Click to Read Paper and Get Code
In this paper, we are interested in generating an cartoon face of a person by using unpaired training data between real faces and cartoon ones. A major challenge of this task is that the structures of real and cartoon faces are in two different domains, whose appearance differs greatly from each other. Without explicit correspondence, it is difficult to generate a high quality cartoon face that captures the essential facial features of a person. In order to solve this problem, we propose landmark assisted CycleGAN, which utilizes face landmarks to define landmark consistency loss and to guide the training of local discriminator in CycleGAN. To enforce structural consistency in landmarks, we utilize the conditional generator and discriminator. Our approach is capable to generate high-quality cartoon faces even indistinguishable from those drawn by artists and largely improves state-of-the-art.

Click to Read Paper and Get Code
Typical techniques for video captioning follow the encoder-decoder framework, which can only focus on one source video being processed. A potential disadvantage of such design is that it cannot capture the multiple visual context information of a word appearing in more than one relevant videos in training data. To tackle this limitation, we propose the Memory-Attended Recurrent Network (MARN) for video captioning, in which a memory structure is designed to explore the full-spectrum correspondence between a word and its various similar visual contexts across videos in training data. Thus, our model is able to achieve a more comprehensive understanding for each word and yield higher captioning quality. Furthermore, the built memory structure enables our method to model the compatibility between adjacent words explicitly instead of asking the model to learn implicitly, as most existing models do. Extensive validation on two real-word datasets demonstrates that our MARN consistently outperforms state-of-the-art methods.

* Accepted by CVPR 2019
Click to Read Paper and Get Code
Albeit intensively studied, false prediction and unclear boundaries are still major issues of salient object detection. In this paper, we propose a Region Refinement Network (RRN), which recurrently filters redundant information and explicitly models boundary information for saliency detection. Different from existing refinement methods, we propose a Region Refinement Module (RRM) that optimizes salient region prediction by incorporating supervised attention masks in the intermediate refinement stages. The module only brings a minor increase in model size and yet significantly reduces false predictions from the background. To further refine boundary areas, we propose a Boundary Refinement Loss (BRL) that adds extra supervision for better distinguishing foreground from background. BRL is parameter free and easy to train. We further observe that BRL helps retain the integrity in prediction by refining the boundary. Extensive experiments on saliency detection datasets show that our refinement module and loss bring significant improvement to the baseline and can be easily applied to different frameworks. We also demonstrate that our proposed model generalizes well to portrait segmentation and shadow detection tasks.

Click to Read Paper and Get Code
We explore the importance of spatial contextual information in human pose estimation. Most state-of-the-art pose networks are trained in a multi-stage manner and produce several auxiliary predictions for deep supervision. With this principle, we present two conceptually simple and yet computational efficient modules, namely Cascade Prediction Fusion (CPF) and Pose Graph Neural Network (PGNN), to exploit underlying contextual information. Cascade prediction fusion accumulates prediction maps from previous stages to extract informative signals. The resulting maps also function as a prior to guide prediction at following stages. To promote spatial correlation among joints, our PGNN learns a structured representation of human pose as a graph. Direct message passing between different joints is enabled and spatial relation is captured. These two modules require very limited computational complexity. Experimental results demonstrate that our method consistently outperforms previous methods on MPII and LSP benchmark.

Click to Read Paper and Get Code
Digital face manipulation has become a popular and fascinating way to touch images with the prevalence of smartphones and social networks. With a wide variety of user preferences, facial expressions, and accessories, a general and flexible model is necessary to accommodate different types of facial editing. In this paper, we propose a model to achieve this goal based on an end-to-end convolutional neural network that supports fast inference, edit-effect control, and quick partial-model update. In addition, this model learns from unpaired image sets with different attributes. Experimental results show that our framework can handle a wide range of expressions, accessories, and makeup effects. It produces high-resolution and high-quality results in fast speed.

* Accepted by CVPR 2018. Code is available on https://github.com/yingcong/Facelet_Bank
Click to Read Paper and Get Code