Models, code, and papers for "Xin Tao":

Efficient Method for Categorize Animals in the Wild

Jul 30, 2019
Abulikemu Abuduweili, Xin Wu, Xingchen Tao

Automatic species classification in camera traps would greatly help the biodiversity monitoring and species analysis in the earth. In order to accelerate the development of automatic species classification task, "Microsoft AI for Earth" have prepared a challenge in FGVC6 workshop at CVPR 2019, which called "iWildCam 2019 competition". In this work, we propose an efficient method for categorizing animals in the wild. We transfer the state-of-the-art ImagaNet pretrained models to the problem. To improve the generalization and robustness of the model, we utilize efficient image augmentation and regularization strategies, like cutout, mixup and label-smoothing. Finally, we use ensemble learning to increase the performance of the model. Thanks to advanced regularization strategies and ensemble learning, we got top 7/336 places in the final leaderboard. Source code of this work is available at

  Click for Model/Code and Paper
From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Denoising

Aug 14, 2018
Zhiyuan Zha, Xin Yuan, Tao Yue, Jiaotao Zhou

In this paper, we propose a novel approach for the rank minimization problem, termed rank residual constraint (RRC). Different from existing low-rank based approaches, such as the well-known weighted nuclear norm minimization (WNNM) and nuclear norm minimization (NNM), which aim to estimate the underlying low-rank matrix directly from the corrupted observation, we progressively approximate or approach the underlying low-rank matrix via minimizing the rank residual. By integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we develop an iterative algorithm for image denoising. To this end, we first present a recursive based nonlocal means method to obtain a good reference of the original image patch groups, and then the rank residual of the image patch groups between this reference and the noisy image is minimized to achieve a better estimate of the desired image. In this manner, both the reference and the estimated image in each iteration are improved gradually and jointly. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art denoising methods in both the objective and perceptual qualities.

  Click for Model/Code and Paper
Evolutionary Generative Adversarial Networks

Mar 01, 2018
Chaoyue Wang, Chang Xu, Xin Yao, Dacheng Tao

Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performance. Unlike existing GANs, which employ a pre-defined adversarial objective function alternately training a generator and a discriminator, we utilize different adversarial training objectives as mutation operations and evolve a population of generators to adapt to the environment (i.e., the discriminator). We also utilize an evaluation mechanism to measure the quality and diversity of generated samples, such that only well-performing generator(s) are preserved and used for further training. In this way, E-GAN overcomes the limitations of an individual adversarial training objective and always preserves the best offspring, contributing to progress in and the success of GANs. Experiments on several datasets demonstrate that E-GAN achieves convincing generative performance and reduces the training problems inherent in existing GANs.

* 14 pages, 8 figures 

  Click for Model/Code and Paper
Convolutional Neural Pyramid for Image Processing

Apr 07, 2017
Xiaoyong Shen, Ying-Cong Chen, Xin Tao, Jiaya Jia

We propose a principled convolutional neural pyramid (CNP) framework for general low-level vision and image processing tasks. It is based on the essential finding that many applications require large receptive fields for structure understanding. But corresponding neural networks for regression either stack many layers or apply large kernels to achieve it, which is computationally very costly. Our pyramid structure can greatly enlarge the field while not sacrificing computation efficiency. Extra benefit includes adaptive network depth and progressive upsampling for quasi-realtime testing on VGA-size input. Our method profits a broad set of applications, such as depth/RGB image restoration, completion, noise/artifact removal, edge refinement, image filtering, image enhancement and colorization.

  Click for Model/Code and Paper
Attribute-Driven Spontaneous Motion in Unpaired Image Translation

Jul 02, 2019
Ruizheng Wu, Xin Tao, Xiaodong Gu, Xiaoyong Shen, Jiaya Jia

Current image translation methods, albeit effective to produce high-quality results on various applications, still do not consider much geometric transforms. We in this paper propose spontaneous motion estimation module, along with a refinement module, to learn attribute-driven deformation between source and target domains. Extensive experiments and visualization demonstrate effectiveness of these modules. We achieve promising results in unpaired image translation tasks, and enable interesting applications with spontaneous motion basis.

  Click for Model/Code and Paper
Image Inpainting via Generative Multi-column Convolutional Neural Networks

Oct 20, 2018
Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, Jiaya Jia

In this paper, we propose a generative multi-column network for image inpainting. This network synthesizes different image components in a parallel manner within one stage. To better characterize global structures, we design a confidence-driven reconstruction loss while an implicit diversified MRF regularization is adopted to enhance local details. The multi-column network combined with the reconstruction and MRF loss propagates local and global information derived from context to the target inpainting regions. Extensive experiments on challenging street view, face, natural objects and scenes manifest that our method produces visual compelling results even without previously common post-processing.

* Accepted in NIPS 2018 

  Click for Model/Code and Paper
Zero-order Reverse Filtering

Apr 13, 2017
Xin Tao, Chao Zhou, Xiaoyong Shen, Jue Wang, Jiaya Jia

In this paper, we study an unconventional but practically meaningful reversibility problem of commonly used image filters. We broadly define filters as operations to smooth images or to produce layers via global or local algorithms. And we raise the intriguingly problem if they are reservable to the status before filtering. To answer it, we present a novel strategy to understand general filter via contraction mappings on a metric space. A very simple yet effective zero-order algorithm is proposed. It is able to practically reverse most filters with low computational cost. We present quite a few experiments in the paper and supplementary file to thoroughly verify its performance. This method can also be generalized to solve other inverse problems and enables new applications.

* 9 pages, submitted to conference 

  Click for Model/Code and Paper
Detail-revealing Deep Video Super-resolution

Apr 10, 2017
Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, Jiaya Jia

Previous CNN-based video super-resolution approaches need to align multiple frames to the reference. In this paper, we show that proper frame alignment and motion compensation is crucial for achieving high quality results. We accordingly propose a `sub-pixel motion compensation' (SPMC) layer in a CNN framework. Analysis and experiments show the suitability of this layer in video SR. The final end-to-end, scalable CNN framework effectively incorporates the SPMC layer and fuses multiple frames to reveal image details. Our implementation can generate visually and quantitatively high-quality results, superior to current state-of-the-arts, without the need of parameter tuning.

* 9 pages, submitted to conference 

  Click for Model/Code and Paper
High-Quality Correspondence and Segmentation Estimation for Dual-Lens Smart-Phone Portraits

Apr 07, 2017
Xiaoyong Shen, Hongyun Gao, Xin Tao, Chao Zhou, Jiaya Jia

Estimating correspondence between two images and extracting the foreground object are two challenges in computer vision. With dual-lens smart phones, such as iPhone 7Plus and Huawei P9, coming into the market, two images of slightly different views provide us new information to unify the two topics. We propose a joint method to tackle them simultaneously via a joint fully connected conditional random field (CRF) framework. The regional correspondence is used to handle textureless regions in matching and make our CRF system computationally efficient. Our method is evaluated over 2,000 new image pairs, and produces promising results on challenging portrait images.

  Click for Model/Code and Paper
Scale-recurrent Network for Deep Image Deblurring

Feb 06, 2018
Xin Tao, Hongyun Gao, Yi Wang, Xiaoyong Shen, Jue Wang, Jiaya Jia

In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-network-based approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-the-arts, both quantitatively and qualitatively.

* 9 pages 

  Click for Model/Code and Paper
Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons

Nov 21, 2019
Ligong Han, Ruijiang Gao, Mun Kim, Xin Tao, Bo Liu, Dimitris Metaxas

Conditional generative adversarial networks have shown exceptional generation performance over the past few years. However, they require large numbers of annotations. To address this problem, we propose a novel generative adversarial network utilizing weak supervision in the form of pairwise comparisons (PC-GAN) for image attribute editing. In the light of Bayesian uncertainty estimation and noise-tolerant adversarial training, PC-GAN can estimate attribute rating efficiently and demonstrate robust performance in noise resistance. Through extensive experiments, we show both qualitatively and quantitatively that PC-GAN performs comparably with fully-supervised methods and outperforms unsupervised baselines.

* 15 pages with 17 figures 

  Click for Model/Code and Paper
Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection

May 27, 2019
Xin Wu, Danfeng Hong, Jocelyn Chanussot, Yang Xu, Ran Tao, Yue Wang

Geospatial object detection of remote sensing imagery has been attracting an increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for geospatial object detection in this letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR-10 dataset, demonstrating the superiority and effectiveness of the FRIFB compared to previous state-of-the-art methods.

  Click for Model/Code and Paper
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

Apr 08, 2019
Lefei Zhang, Qian Zhang, Bo Du, Xin Huang, Yuan Yan Tang, Dacheng Tao

In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  Click for Model/Code and Paper
ORSIm Detector: A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Frequency Channel Features

Jan 31, 2019
Xin Wu, Danfeng Hong, Jiaojiao Tian, Jocelyn Chanussot, Wei Li, Ran Tao

With the rapid development of spaceborne imaging techniques, object detection in optical remote sensing imagery has drawn much attention in recent decades. While many advanced works have been developed with powerful learning algorithms, the incomplete feature representation still cannot meet the demand for effectively and efficiently handling image deformations, particularly objective scaling and rotation. To this end, we propose a novel object detection framework, called optical remote sensing imagery detector (ORSIm detector), integrating diverse channel features extraction, feature learning, fast image pyramid matching, and boosting strategy. ORSIm detector adopts a novel spatial-frequency channel feature (SFCF) by jointly considering the rotation-invariant channel features constructed in frequency domain and the original spatial channel features (e.g., color channel, gradient magnitude). Subsequently, we refine SFCF using learning-based strategy in order to obtain the high-level or semantically meaningful features. In the test phase, we achieve a fast and coarsely-scaled channel computation by mathematically estimating a scaling factor in the image domain. Extensive experimental results conducted on the two different airborne datasets are performed to demonstrate the superiority and effectiveness in comparison with previous state-of-the-art methods.

  Click for Model/Code and Paper
DeepSZ: A Novel Framework to Compress Deep Neural Networks by Using Error-Bounded Lossy Compression

Jan 26, 2019
Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, Franck Cappello

DNNs have been quickly and broadly exploited to improve the data analysis quality in many complex science and engineering applications. Today's DNNs are becoming deeper and wider because of increasing demand on the analysis quality and more and more complex applications to resolve. The wide and deep DNNs, however, require large amounts of resources, significantly restricting their utilization on resource-constrained systems. Although some network simplification methods have been proposed to address this issue, they suffer from either low compression ratios or high compression errors, which may introduce a costly retraining process for the target accuracy. In this paper, we propose DeepSZ: an accuracy-loss bounded neural network compression framework, which involves four key steps: network pruning, error bound assessment, optimization for error bound configuration, and compressed model generation, featuring a high compression ratio and low encoding time. The contribution is three-fold. (1) We develop an adaptive approach to select the feasible error bounds for each layer. (2) We build a model to estimate the overall loss of accuracy based on the accuracy degradation caused by individual decompressed layers. (3) We develop an efficient optimization algorithm to determine the best-fit configuration of error bounds in order to maximize the compression ratio under the user-set accuracy constraint. Experiments show that DeepSZ can compress AlexNet and VGG-16 on the ImageNet by a compression ratio of 46X and 116X, respectively, and compress LeNet-300-100 and LeNet-5 on the MNIST by a compression ratio of 57X and 56X, respectively, with only up to 0.3% loss of accuracy. Compared with other state-of-the-art methods, DeepSZ can improve the compression ratio by up to 1.43X, the DNN encoding performance by up to 4.0X (with four Nvidia Tesla V100 GPUs), and the decoding performance by up to 6.2X.

* 12 pages, 6 figures, submitted to HPDC'19 

  Click for Model/Code and Paper
Landmark Assisted CycleGAN for Cartoon Face Generation

Jul 02, 2019
Ruizheng Wu, Xiaodong Gu, Xin Tao, Xiaoyong Shen, Yu-Wing Tai, Jiaya Jia

In this paper, we are interested in generating an cartoon face of a person by using unpaired training data between real faces and cartoon ones. A major challenge of this task is that the structures of real and cartoon faces are in two different domains, whose appearance differs greatly from each other. Without explicit correspondence, it is difficult to generate a high quality cartoon face that captures the essential facial features of a person. In order to solve this problem, we propose landmark assisted CycleGAN, which utilizes face landmarks to define landmark consistency loss and to guide the training of local discriminator in CycleGAN. To enforce structural consistency in landmarks, we utilize the conditional generator and discriminator. Our approach is capable to generate high-quality cartoon faces even indistinguishable from those drawn by artists and largely improves state-of-the-art.

  Click for Model/Code and Paper
Optimized Cartesian $K$-Means

May 16, 2014
Jianfeng Wang, Jingdong Wang, Jingkuan Song, Xin-Shun Xu, Heng Tao Shen, Shipeng Li

Product quantization-based approaches are effective to encode high-dimensional data points for approximate nearest neighbor search. The space is decomposed into a Cartesian product of low-dimensional subspaces, each of which generates a sub codebook. Data points are encoded as compact binary codes using these sub codebooks, and the distance between two data points can be approximated efficiently from their codes by the precomputed lookup tables. Traditionally, to encode a subvector of a data point in a subspace, only one sub codeword in the corresponding sub codebook is selected, which may impose strict restrictions on the search accuracy. In this paper, we propose a novel approach, named Optimized Cartesian $K$-Means (OCKM), to better encode the data points for more accurate approximate nearest neighbor search. In OCKM, multiple sub codewords are used to encode the subvector of a data point in a subspace. Each sub codeword stems from different sub codebooks in each subspace, which are optimally generated with regards to the minimization of the distortion errors. The high-dimensional data point is then encoded as the concatenation of the indices of multiple sub codewords from all the subspaces. This can provide more flexibility and lower distortion errors than traditional methods. Experimental results on the standard real-life datasets demonstrate the superiority over state-of-the-art approaches for approximate nearest neighbor search.

* to appear in IEEE TKDE, accepted in Apr. 2014 

  Click for Model/Code and Paper
Deep Recurrent Quantization for Generating Sequential Binary Codes

Jul 15, 2019
Jingkuan Song, Xiaosu Zhu, Lianli Gao, Xin-Shun Xu, Wu Liu, Heng Tao Shen

Quantization has been an effective technology in ANN (approximate nearest neighbour) search due to its high accuracy and fast search speed. To meet the requirement of different applications, there is always a trade-off between retrieval accuracy and speed, reflected by variable code lengths. However, to encode the dataset into different code lengths, existing methods need to train several models, where each model can only produce a specific code length. This incurs a considerable training time cost, and largely reduces the flexibility of quantization methods to be deployed in real applications. To address this issue, we propose a Deep Recurrent Quantization (DRQ) architecture which can generate sequential binary codes. To the end, when the model is trained, a sequence of binary codes can be generated and the code length can be easily controlled by adjusting the number of recurrent iterations. A shared codebook and a scalar factor is designed to be the learnable weights in the deep recurrent quantization block, and the whole framework can be trained in an end-to-end manner. As far as we know, this is the first quantization method that can be trained once and generate sequential binary codes. Experimental results on the benchmark datasets show that our model achieves comparable or even better performance compared with the state-of-the-art for image retrieval. But it requires significantly less number of parameters and training times. Our code is published online:

  Click for Model/Code and Paper