We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning features only among these classes. Such features are expected to be more discriminative, compared to features learned for all the classes. We develop a new algorithm to effectively learn the tree structure from a large number of classes. Experiments on large-scale image classification tasks demonstrate that our method could boost the performance of a given basic CNN model. Our method is quite general, hence it can potentially be used in combination with many other deep learning models.

* Neurocomputing 2017
Click to Read Paper
Video based action recognition is one of the important and challenging problems in computer vision research. Bag of Visual Words model (BoVW) with local features has become the most popular method and obtained the state-of-the-art performance on several realistic datasets, such as the HMDB51, UCF50, and UCF101. BoVW is a general pipeline to construct a global representation from a set of local features, which is mainly composed of five steps: (i) feature extraction, (ii) feature pre-processing, (iii) codebook generation, (iv) feature encoding, and (v) pooling and normalization. Many efforts have been made in each step independently in different scenarios and their effect on action recognition is still unknown. Meanwhile, video data exhibits different views of visual pattern, such as static appearance and motion dynamics. Multiple descriptors are usually extracted to represent these different views. Many feature fusion methods have been developed in other areas and their influence on action recognition has never been investigated before. This paper aims to provide a comprehensive study of all steps in BoVW and different fusion methods, and uncover some good practice to produce a state-of-the-art action recognition system. Specifically, we explore two kinds of local features, ten kinds of encoding methods, eight kinds of pooling and normalization strategies, and three kinds of fusion methods. We conclude that every step is crucial for contributing to the final recognition rate. Furthermore, based on our comprehensive study, we propose a simple yet effective representation, called hybrid representation, by exploring the complementarity of different BoVW frameworks and local descriptors. Using this representation, we obtain the state-of-the-art on the three challenging datasets: HMDB51 (61.1%), UCF50 (92.3%), and UCF101 (87.9%).

Click to Read Paper
Existing deep convolutional neural networks (CNNs) have shown their great success on image classification. CNNs mainly consist of convolutional and pooling layers, both of which are performed on local image areas without considering the dependencies among different image regions. However, such dependencies are very important for generating explicit image representation. In contrast, recurrent neural networks (RNNs) are well known for their ability of encoding contextual information among sequential data, and they only require a limited number of network parameters. General RNNs can hardly be directly applied on non-sequential data. Thus, we proposed the hierarchical RNNs (HRNNs). In HRNNs, each RNN layer focuses on modeling spatial dependencies among image regions from the same scale but different locations. While the cross RNN scale connections target on modeling scale dependencies among regions from the same location but different scales. Specifically, we propose two recurrent neural network models: 1) hierarchical simple recurrent network (HSRN), which is fast and has low computational cost; and 2) hierarchical long-short term memory recurrent network (HLSTM), which performs better than HSRN with the price of more computational cost. In this manuscript, we integrate CNNs with HRNNs, and develop end-to-end convolutional hierarchical recurrent neural networks (C-HRNNs). C-HRNNs not only make use of the representation power of CNNs, but also efficiently encodes spatial and scale dependencies among different image regions. On four of the most challenging object/scene image classification benchmarks, our C-HRNNs achieve state-of-the-art results on Places 205, SUN 397, MIT indoor, and competitive results on ILSVRC 2012.

Click to Read Paper
Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to universal complex tasks. Among them, the low efficiency of data utilization in model-free reinforcement algorithms is of great concern. In contrast, the model-based reinforcement learning algorithms can reveal underlying dynamics in learning environments and seldom suffer the data utilization problem. To address the problem, a model-based reinforcement learning algorithm with attention mechanism embedded is proposed as an extension of World Models in this paper. We learn the environment model through Mixture Density Network Recurrent Network(MDN-RNN) for agents to interact, with combinations of variational auto-encoder(VAE) and attention incorporated in state value estimates during the process of learning policy. In this way, agent can learn optimal policies through less interactions with actual environment, and final experiments demonstrate the effectiveness of our model in control problem.

Click to Read Paper
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.

* Pattern Recognition, Elsevier
Click to Read Paper
Unsupervised clustering has broad applications in data stratification, pattern investigation and new discovery beyond existing knowledge. In particular, clustering of bioactive molecules facilitates chemical space mapping, structure-activity studies, and drug discovery. These tasks, conventionally conducted by similarity-based methods, are complicated by data complexity and diversity. We ex-plored the superior learning capability of deep autoencoders for unsupervised clustering of 1.39 mil-lion bioactive molecules into band-clusters in a 3-dimensional latent chemical space. These band-clusters, displayed by a space-navigation simulation software, band molecules of selected bioactivity classes into individual band-clusters possessing unique sets of common sub-structural features beyond structural similarity. These sub-structural features form the frameworks of the literature-reported pharmacophores and privileged fragments. Within each band-cluster, molecules are further banded into selected sub-regions with respect to their bioactivity target, sub-structural features and molecular scaffolds. Our method is potentially applicable for big data clustering tasks of different fields.

Click to Read Paper