Models, code, and papers for "Yan Han":

Listen to Your Face: Inferring Facial Action Units from Audio Channel

Sep 19, 2017
Zibo Meng, Shizhong Han, Yan Tong

Extensive efforts have been devoted to recognizing facial action units (AUs). However, it is still challenging to recognize AUs from spontaneous facial displays especially when they are accompanied with speech. Different from all prior work that utilized visual observations for facial AU recognition, this paper presents a novel approach that recognizes speech-related AUs exclusively from audio signals based on the fact that facial activities are highly correlated with voice during speech. Specifically, dynamic and physiological relationships between AUs and phonemes are modeled through a continuous time Bayesian network (CTBN); then AU recognition is performed by probabilistic inference via the CTBN model. A pilot audiovisual AU-coded database has been constructed to evaluate the proposed audio-based AU recognition framework. The database consists of a "clean" subset with frontal and neutral faces and a challenging subset collected with large head movements and occlusions. Experimental results on this database show that the proposed CTBN model achieves promising recognition performance for 7 speech-related AUs and outperforms the state-of-the-art visual-based methods especially for those AUs that are activated at low intensities or "hardly visible" in the visual channel. Furthermore, the CTBN model yields more impressive recognition performance on the challenging subset, where the visual-based approaches suffer significantly.

* Accepted to IEEE Transactions on Affective Computing (TAFFC) 

  Click for Model/Code and Paper
The Knowledge Gradient Policy Using A Sparse Additive Belief Model

Mar 18, 2015
Yan Li, Han Liu, Warren Powell

We propose a sequential learning policy for noisy discrete global optimization and ranking and selection (R\&S) problems with high dimensional sparse belief functions, where there are hundreds or even thousands of features, but only a small portion of these features contain explanatory power. We aim to identify the sparsity pattern and select the best alternative before the finite budget is exhausted. We derive a knowledge gradient policy for sparse linear models (KGSpLin) with group Lasso penalty. This policy is a unique and novel hybrid of Bayesian R\&S with frequentist learning. Particularly, our method naturally combines B-spline basis expansion and generalizes to the nonparametric additive model (KGSpAM) and functional ANOVA model. Theoretically, we provide the estimation error bounds of the posterior mean estimate and the functional estimate. Controlled experiments show that the algorithm efficiently learns the correct set of nonzero parameters even when the model is imbedded with hundreds of dummy parameters. Also it outperforms the knowledge gradient for a linear model.

  Click for Model/Code and Paper
Dual Ask-Answer Network for Machine Reading Comprehension

Sep 10, 2018
Han Xiao, Feng Wang, Jianfeng Yan, Jingyao Zheng

There are three modalities in the reading comprehension setting: question, answer and context. The task of question answering or question generation aims to infer an answer or a question when given the counterpart based on context. We present a novel two-way neural sequence transduction model that connects three modalities, allowing it to learn two tasks simultaneously and mutually benefit one another. During training, the model receives question-context-answer triplets as input and captures the cross-modal interaction via a hierarchical attention process. Unlike previous joint learning paradigms that leverage the duality of question generation and question answering at data level, we solve such dual tasks at the architecture level by mirroring the network structure and partially sharing components at different layers. This enables the knowledge to be transferred from one task to another, helping the model to find a general representation for each modality. The evaluation on four public datasets shows that our dual-learning model outperforms the mono-learning counterpart as well as the state-of-the-art joint models on both question answering and question generation tasks.

* 8 pages, 5 figures, 4 tables. Code is available at 

  Click for Model/Code and Paper
Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis

Aug 30, 2018
Weizheng Yan, Han Zhang, Jing Sui, Dinggang Shen

Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for disease diagnosis, where discriminating subjects with mild cognitive impairment (MCI) from normal controls (NC) is still one of the most challenging problems. Dynamic functional connectivity (dFC), consisting of time-varying spatiotemporal dynamics, may characterize "chronnectome" diagnostic information for improving MCI classification. However, most of the current dFC studies are based on detecting discrete major brain status via spatial clustering, which ignores rich spatiotemporal dynamics contained in such chronnectome. We propose Deep Chronnectome Learning for exhaustively mining the comprehensive information, especially the hidden higher-level features, i.e., the dFC time series that may add critical diagnostic power for MCI classification. To this end, we devise a new Fully-connected Bidirectional Long Short-Term Memory Network (Full-BiLSTM) to effectively learn the periodic brain status changes using both past and future information for each brief time segment and then fuse them to form the final output. We have applied our method to a rigorously built large-scale multi-site database (i.e., with 164 data from NCs and 330 from MCIs, which can be further augmented by 25 folds). Our method outperforms other state-of-the-art approaches with an accuracy of 73.6% under solid cross-validations. We also made extensive comparisons among multiple variants of LSTM models. The results suggest high feasibility of our method with promising value also for other brain disorder diagnoses.

* The paper has been accepted by MICCAI2018 

  Click for Model/Code and Paper
Improving Speech Related Facial Action Unit Recognition by Audiovisual Information Fusion

Jun 29, 2017
Zibo Meng, Shizhong Han, Ping Liu, Yan Tong

It is challenging to recognize facial action unit (AU) from spontaneous facial displays, especially when they are accompanied by speech. The major reason is that the information is extracted from a single source, i.e., the visual channel, in the current practice. However, facial activity is highly correlated with voice in natural human communications. Instead of solely improving visual observations, this paper presents a novel audiovisual fusion framework, which makes the best use of visual and acoustic cues in recognizing speech-related facial AUs. In particular, a dynamic Bayesian network (DBN) is employed to explicitly model the semantic and dynamic physiological relationships between AUs and phonemes as well as measurement uncertainty. A pilot audiovisual AU-coded database has been collected to evaluate the proposed framework, which consists of a "clean" subset containing frontal faces under well controlled circumstances and a challenging subset with large head movements and occlusions. Experiments on this database have demonstrated that the proposed framework yields significant improvement in recognizing speech-related AUs compared to the state-of-the-art visual-based methods especially for those AUs whose visual observations are impaired during speech, and more importantly also outperforms feature-level fusion methods by explicitly modeling and exploiting physiological relationships between AUs and phonemes.

* arXiv admin note: text overlap with arXiv:1706.07536 

  Click for Model/Code and Paper
Image Type Water Meter Character Recognition Based on Embedded DSP

Aug 27, 2015
Ying Liu, Yan-bin Han, Yu-lin Zhang

In the paper, we combined DSP processor with image processing algorithm and studied the method of water meter character recognition. We collected water meter image through camera at a fixed angle, and the projection method is used to recognize those digital images. The experiment results show that the method can recognize the meter characters accurately and artificial meter reading is replaced by automatic digital recognition, which improves working efficiency.

  Click for Model/Code and Paper
Approximated Oracle Filter Pruning for Destructive CNN Width Optimization

May 12, 2019
Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, Chenggang Yan

It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters' importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inference.

* ICML 2019 

  Click for Model/Code and Paper
Synchronous Adversarial Feature Learning for LiDAR based Loop Closure Detection

Apr 05, 2018
Peng Yin, Yuqing He, Lingyun Xu, Yan Peng, Jianda Han, Weiliang Xu

Loop Closure Detection (LCD) is the essential module in the simultaneous localization and mapping (SLAM) task. In the current appearance-based SLAM methods, the visual inputs are usually affected by illumination, appearance and viewpoints changes. Comparing to the visual inputs, with the active property, light detection and ranging (LiDAR) based point-cloud inputs are invariant to the illumination and appearance changes. In this paper, we extract 3D voxel maps and 2D top view maps from LiDAR inputs, and the former could capture the local geometry into a simplified 3D voxel format, the later could capture the local road structure into a 2D image format. However, the most challenge problem is to obtain efficient features from 3D and 2D maps to against the viewpoints difference. In this paper, we proposed a synchronous adversarial feature learning method for the LCD task, which could learn the higher level abstract features from different domains without any label data. To the best of our knowledge, this work is the first to extract multi-domain adversarial features for the LCD task in real time. To investigate the performance, we test the proposed method on the KITTI odometry dataset. The extensive experiments results show that, the proposed method could largely improve LCD accuracy even under huge viewpoints differences.

* 6 Pages, accepted by ACC2018 

  Click for Model/Code and Paper
Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition

Jul 17, 2017
Shizhong Han, Zibo Meng, Ahmed Shehab Khan, Yan Tong

Recognizing facial action units (AUs) from spontaneous facial expressions is still a challenging problem. Most recently, CNNs have shown promise on facial AU recognition. However, the learned CNNs are often overfitted and do not generalize well to unseen subjects due to limited AU-coded training images. We proposed a novel Incremental Boosting CNN (IB-CNN) to integrate boosting into the CNN via an incremental boosting layer that selects discriminative neurons from the lower layer and is incrementally updated on successive mini-batches. In addition, a novel loss function that accounts for errors from both the incremental boosted classifier and individual weak classifiers was proposed to fine-tune the IB-CNN. Experimental results on four benchmark AU databases have demonstrated that the IB-CNN yields significant improvement over the traditional CNN and the boosting CNN without incremental learning, as well as outperforming the state-of-the-art CNN-based methods in AU recognition. The improvement is more impressive for the AUs that have the lowest frequencies in the databases.

* NIPS2016 

  Click for Model/Code and Paper
Back to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation

May 21, 2016
Kevin H. Wilson, Yan Karklin, Bojian Han, Chaitanya Ekanadham

Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given previous responses using two publicly available and one proprietary data set. We find that IRT-based methods consistently matched or outperformed DKT across all data sets at the finest level of content granularity that was tractable for them to be trained on. A hierarchical extension of IRT that captured item grouping structure performed best overall. When data sets included non-trivial autocorrelations in student response patterns, a temporal extension of IRT improved performance over standard IRT while the RNN-based method did not. We conclude that IRT-based models provide a simpler, better-performing alternative to existing RNN-based models of student interaction data while also affording more interpretability and guarantees due to their formulation as Bayesian probabilistic models.

* 6 pages, 2 figures, Educational Data Mining 2016 

  Click for Model/Code and Paper
RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement

Sep 23, 2014
Bo Han, Bo He, Mengmeng Ma, Tingting Sun, Tianhong Yan, Amaury Lendasse

Extreme learning machine (ELM) as an emerging branch of shallow networks has shown its excellent generalization and fast learning speed. However, for blended data, the robustness of ELM is weak because its weights and biases of hidden nodes are set randomly. Moreover, the noisy data exert a negative effect. To solve this problem, a new framework called RMSE-ELM is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different groups concurrently, then employs selective ensemble to pick out an optimal set of ELMs in each group, which can be merged into a large group of ELMs called candidate pool. In the second layer, selective ensemble is recursively used on candidate pool to acquire the final ensemble. In the experiments, we apply UCI blended datasets to confirm the robustness of our new approach in two key aspects (mean square error and standard deviation). The space complexity of our method is increased to some degree, but the results have shown that RMSE-ELM significantly improves robustness with slightly computational time compared with representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework to solve robustness issue of ELM for high-dimensional blended data in the future.

* Accepted for publication in Mathematical Problems in Engineering, 09/22/2014 

  Click for Model/Code and Paper
Spoken Speech Enhancement using EEG

Sep 13, 2019
Gautam Krishna, Yan Han, Co Tran, Mason Carnahan, Ahmed H Tewfik

In this paper we demonstrate spoken speech enhancement using electroencephalography (EEG) signals using a generative adversarial network (GAN) based model and Long short-term Memory (LSTM) regression based model. Our results demonstrate that EEG features can be used to clean speech recorded in presence of background noise.

* To be submitted to ICASSP 2020. arXiv admin note: text overlap with arXiv:1906.08044, arXiv:1906.08871, arXiv:1906.08045 

  Click for Model/Code and Paper
From Crowdsourcing to Crowdmining: Using Implicit Human Intelligence for Better Understanding of Crowdsourced Data

Aug 07, 2019
Bin Guo, Huihui Chen, Yan Liu, Chao Chen, Qi Han, Zhiwen Yu

With the development of mobile social networks, more and more crowdsourced data are generated on the Web or collected from real-world sensing. The fragment, heterogeneous, and noisy nature of online/offline crowdsourced data, however, makes it difficult to be understood. Traditional content-based analyzing methods suffer from potential issues such as computational intensiveness and poor performance. To address them, this paper presents CrowdMining. In particular, we observe that the knowledge hidden in the process of data generation, regarding individual/crowd behavior patterns (e.g., mobility patterns, community contexts such as social ties and structure) and crowd-object interaction patterns (flickering or tweeting patterns) are neglected in crowdsourced data mining. Therefore, a novel approach that leverages implicit human intelligence (implicit HI) for crowdsourced data mining and understanding is proposed. Two studies titled CrowdEvent and CrowdRoute are presented to showcase its usage, where implicit HIs are extracted either from online or offline crowdsourced data. A generic model for CrowdMining is further proposed based on a set of existing studies. Experiments based on real-world datasets demonstrate the effectiveness of CrowdMining.

* 12 pages, accepted by World Wide Web Journal 

  Click for Model/Code and Paper
Speech Recognition With No Speech Or With Noisy Speech Beyond English

Jul 14, 2019
Gautam Krishna, Co Tran, Yan Han, Mason Carnahan, Ahmed H Tewfik

In this paper we demonstrate continuous noisy speech recognition using connectionist temporal classification (CTC) model on limited Chinese vocabulary using electroencephalography (EEG) features with no speech signal as input and we further demonstrate single CTC model based continuous noisy speech recognition on limited joint English and Chinese vocabulary using EEG features with no speech signal as input.

* On preparation for submission for ICASSP 2020. arXiv admin note: text overlap with arXiv:1906.08044 

  Click for Model/Code and Paper
Robust End to End Speaker Verification Using EEG

Jun 17, 2019
Yan Han, Gautam Krishna, Co Tran, Mason Carnahan, Ahmed H Tewfik

In this paper we demonstrate that performance of a speaker verification system can be improved by concatenating electroencephalography (EEG) signal features with speech signal. We use state of art end to end deep learning model for performing speaker verification and we demonstrate our results for noisy speech. Our results indicate that EEG signals can improve the robustness of speaker verification systems.

  Click for Model/Code and Paper
hyperdoc2vec: Distributed Representations of Hypertext Documents

May 10, 2018
Jialong Han, Yan Song, Wayne Xin Zhao, Shuming Shi, Haisong Zhang

Hypertext documents, such as web pages and academic papers, are of great importance in delivering information in our daily life. Although being effective on plain documents, conventional text embedding methods suffer from information loss if directly adapted to hyper-documents. In this paper, we propose a general embedding approach for hyper-documents, namely, hyperdoc2vec, along with four criteria characterizing necessary information that hyper-document embedding models should preserve. Systematic comparisons are conducted between hyperdoc2vec and several competitors on two tasks, i.e., paper classification and citation recommendation, in the academic paper domain. Analyses and experiments both validate the superiority of hyperdoc2vec to other models w.r.t. the four criteria.

* Accepted to ACL 2018 

  Click for Model/Code and Paper
Effective Neural Solution for Multi-Criteria Word Segmentation

Jan 04, 2018
Han He, Lei Wu, Hua Yan, Zhimin Gao, Yi Feng, George Townsend

We present a simple yet elegant solution to train a single joint model on multi-criteria corpora for Chinese Word Segmentation (CWS). Our novel design requires no private layers in model architecture, instead, introduces two artificial tokens at the beginning and ending of input sentence to specify the required target criteria. The rest of the model including Long Short-Term Memory (LSTM) layer and Conditional Random Fields (CRFs) layer remains unchanged and is shared across all datasets, keeping the size of parameter collection minimal and constant. On Bakeoff 2005 and Bakeoff 2008 datasets, our innovative design has surpassed both single-criterion and multi-criteria state-of-the-art learning results. To the best knowledge, our design is the first one that has achieved the latest high performance on such large scale datasets. Source codes and corpora of this paper are available on GitHub.

* 2nd International Conference on Smart Computing & Informatics (SCI-2018), Springer Smart Innovation Systems and Technologies Book Series, Springer-Verlag, Accepted & Forthcoming, 2018 

  Click for Model/Code and Paper
Learning Mutually Local-global U-nets For High-resolution Retinal Lesion Segmentation in Fundus Images

Jan 18, 2019
Zizheng Yan, Xiaoguang Han, Changmiao Wang, Yuda Qiu, Zixiang Xiong, Shuguang Cui

Diabetic retinopathy is the most important complication of diabetes. Early diagnosis of retinal lesions helps to avoid visual loss or blindness. Due to high-resolution and small-size lesion regions, applying existing methods, such as U-Nets, to perform segmentation on fundus photography is very challenging. Although downsampling the input images could simplify the problem, it loses detailed information. Conducting patch-level analysis helps reaching fine-scale segmentation yet usually leads to misunderstanding as the lack of context information. In this paper, we propose an efficient network that combines them together, not only being aware of local details but also taking fully use of the context perceptions. This is implemented by integrating the decoder parts of a global-level U-net and a patch-level one. The two streams are jointly optimized, ensuring that they are enhanced mutually. Experimental results demonstrate our new framework significantly outperforms existing patch-based and global-based methods, especially when the lesion regions are scattered and small-scaled.

* 4 pages, Accepted by ISBI 2019 

  Click for Model/Code and Paper
Dual Long Short-Term Memory Networks for Sub-Character Representation Learning

Jan 04, 2018
Han He, Lei Wu, Xiaokun Yang, Hua Yan, Zhimin Gao, Yi Feng, George Townsend

Characters have commonly been regarded as the minimal processing unit in Natural Language Processing (NLP). But many non-latin languages have hieroglyphic writing systems, involving a big alphabet with thousands or millions of characters. Each character is composed of even smaller parts, which are often ignored by the previous work. In this paper, we propose a novel architecture employing two stacked Long Short-Term Memory Networks (LSTMs) to learn sub-character level representation and capture deeper level of semantic meanings. To build a concrete study and substantiate the efficiency of our neural architecture, we take Chinese Word Segmentation as a research case example. Among those languages, Chinese is a typical case, for which every character contains several components called radicals. Our networks employ a shared radical level embedding to solve both Simplified and Traditional Chinese Word Segmentation, without extra Traditional to Simplified Chinese conversion, in such a highly end-to-end way the word segmentation can be significantly simplified compared to the previous work. Radical level embeddings can also capture deeper semantic meaning below character level and improve the system performance of learning. By tying radical and character embeddings together, the parameter count is reduced whereas semantic knowledge is shared and transferred between two levels, boosting the performance largely. On 3 out of 4 Bakeoff 2005 datasets, our method surpassed state-of-the-art results by up to 0.4%. Our results are reproducible, source codes and corpora are available on GitHub.

* Accepted & forthcoming at ITNG-2018 

  Click for Model/Code and Paper