Research papers and code for "Yangqiu Song":
Lack of labeled training data is a major bottleneck for neural network based aspect and opinion term extraction on product reviews. To alleviate this problem, we first propose an algorithm to automatically mine extraction rules from existing training examples based on dependency parsing results. The mined rules are then applied to label a large amount of auxiliary data. Finally, we study training procedures to train a neural model which can learn from both the data automatically labeled by the rules and a small amount of data accurately annotated by human. Experimental results show that although the mined rules themselves do not perform well due to their limited flexibility, the combination of human annotated data and rule labeled auxiliary data can improve the neural model and allow it to achieve performance better than or comparable with the current state-of-the-art.

* ACL 2019
Click to Read Paper and Get Code
Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic.

Click to Read Paper and Get Code
Linking pronominal expressions to the correct references requires, in many cases, better analysis of the contextual information and external knowledge. In this paper, we propose a two-layer model for pronoun coreference resolution that leverages both context and external knowledge, where a knowledge attention mechanism is designed to ensure the model leveraging the appropriate source of external knowledge based on different context. Experimental results demonstrate the validity and effectiveness of our model, where it outperforms state-of-the-art models by a large margin.

* Accepted by NAACL-HLT 2019
Click to Read Paper and Get Code
Network representation learning has aroused widespread interests in recent years. While most of the existing methods deal with edges as pairwise relations, only a few studies have been proposed for hyper-networks to capture more complicated tuplewise relationships among multiple nodes. A hyper-network is a network where each edge, called hyperedge, connects an arbitrary number of nodes. Different from conventional networks, hyper-networks have certain degrees of indecomposability such that the nodes in a subset of a hyperedge may not possess a strong relationship. That is the main reason why traditional algorithms fail in learning representations in hyper-networks by simply decomposing hyperedges into pairwise relationships. In this paper, we firstly define a metric to depict the degrees of indecomposability for hyper-networks. Then we propose a new concept called hyper-path and design hyper-path-based random walks to preserve the structural information of hyper-networks according to the analysis of the indecomposability. Then a carefully designed algorithm, Hyper-gram, utilizes these random walks to capture both pairwise relationships and tuplewise relationships in the whole hyper-networks. Finally, we conduct extensive experiments on several real-world datasets covering the tasks of link prediction and hyper-network reconstruction, and results demonstrate the rationality, validity, and effectiveness of our methods compared with those existing state-of-the-art models designed for conventional networks or hyper-networks.

* Accepted by CIKM 2019
Click to Read Paper and Get Code
Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.

* Accepted by ACL 2019
Click to Read Paper and Get Code
Hierarchical text classification has many real-world applications. However, labeling a large number of documents is costly. In practice, we can use semi-supervised learning or weakly supervised learning (e.g., dataless classification) to reduce the labeling cost. In this paper, we propose a path cost-sensitive learning algorithm to utilize the structural information and further make use of unlabeled and weakly-labeled data. We use a generative model to leverage the large amount of unlabeled data and introduce path constraints into the learning algorithm to incorporate the structural information of the class hierarchy. The posterior probabilities of both unlabeled and weakly labeled data can be incorporated with path-dependent scores. Since we put a structure-sensitive cost to the learning algorithm to constrain the classification consistent with the class hierarchy and do not need to reconstruct the feature vectors for different structures, we can significantly reduce the computational cost compared to structural output learning. Experimental results on two hierarchical text classification benchmarks show that our approach is not only effective but also efficient to handle the semi-supervised and weakly supervised hierarchical text classification.

* Aceepted by 2019 World Wide Web Conference (WWW19)
Click to Read Paper and Get Code
This paper presents an approach to classify documents in any language into an English topical label space, without any text categorization training data. The approach, Cross-Lingual Dataless Document Classification (CLDDC) relies on mapping the English labels or short category description into a Wikipedia-based semantic representation, and on the use of the target language Wikipedia. Consequently, performance could suffer when Wikipedia in the target language is small. In this paper, we focus on languages with small Wikipedias, (Small-Wikipedia languages, SWLs). We use a word-level dictionary to convert documents in a SWL to a large-Wikipedia language (LWLs), and then perform CLDDC based on the LWL's Wikipedia. This approach can be applied to thousands of languages, which can be contrasted with machine translation, which is a supervision heavy approach and can be done for about 100 languages. We also develop a ranking algorithm that makes use of language similarity metrics to automatically select a good LWL, and show that this significantly improves classification of SWLs' documents, performing comparably to the best bridge possible.

Click to Read Paper and Get Code
Resolving pronoun coreference requires knowledge support, especially for particular domains (e.g., medicine). In this paper, we explore how to leverage different types of knowledge to better resolve pronoun coreference with a neural model. To ensure the generalization ability of our model, we directly incorporate knowledge in the format of triplets, which is the most common format of modern knowledge graphs, instead of encoding it with features or rules as that in conventional approaches. Moreover, since not all knowledge is helpful in certain contexts, to selectively use them, we propose a knowledge attention module, which learns to select and use informative knowledge based on contexts, to enhance our model. Experimental results on two datasets from different domains prove the validity and effectiveness of our model, where it outperforms state-of-the-art baselines by a large margin. Moreover, since our model learns to use external knowledge rather than only fitting the training data, it also demonstrates superior performance to baselines in the cross-domain setting.

* Accepted by ACL 2019
Click to Read Paper and Get Code
Grounding a pronoun to a visual object it refers to requires complex reasoning from various information sources, especially in conversational scenarios. For example, when people in a conversation talk about something all speakers can see, they often directly use pronouns (e.g., it) to refer to it without previous introduction. This fact brings a huge challenge for modern natural language understanding systems, particularly conventional context-based pronoun coreference models. To tackle this challenge, in this paper, we formally define the task of visual-aware pronoun coreference resolution (PCR) and introduce VisPro, a large-scale dialogue PCR dataset, to investigate whether and how the visual information can help resolve pronouns in dialogues. We then propose a novel visual-aware PCR model, VisCoref, for this task and conduct comprehensive experiments and case studies on our dataset. Results demonstrate the importance of the visual information in this PCR case and show the effectiveness of the proposed model.

* 10 pages, 7 figures. Accepted by EMNLP 2019
Click to Read Paper and Get Code
Unsupervised relation discovery aims to discover new relations from a given text corpus without annotated data. However, it does not consider existing human annotated knowledge bases even when they are relevant to the relations to be discovered. In this paper, we study the problem of how to use out-of-relation knowledge bases to supervise the discovery of unseen relations, where out-of-relation means that relations to discover from the text corpus and those in knowledge bases are not overlapped. We construct a set of constraints between entity pairs based on the knowledge base embedding and then incorporate constraints into the relation discovery by a variational auto-encoder based algorithm. Experiments show that our new approach can improve the state-of-the-art relation discovery performance by a large margin.

* Aceepted by NAACL-HLT 2019
Click to Read Paper and Get Code
In this paper, we propose a variational approach to weakly supervised document-level multi-aspect sentiment classification. Instead of using user-generated ratings or annotations provided by domain experts, we use target-opinion word pairs as "supervision." These word pairs can be extracted by using dependency parsers and simple rules. Our objective is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment polarity classifier to predict the sentiment polarity of each aspect given a document. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment polarity classifier to the objective via the variational lower bound. We can learn a sentiment polarity classifier by optimizing the lower bound. We show that our method can outperform weakly supervised baselines on TripAdvisor and BeerAdvocate datasets and can be comparable to the state-of-the-art supervised method with hundreds of labels per aspect.

* Accepted by NAACL-HLT 2019
Click to Read Paper and Get Code
Knowledge bases (KBs) have attracted increasing attention due to its great success in various areas, such as Web and mobile search.Existing KBs are restricted to objective factual knowledge, such as city population or fruit shape, whereas,subjective knowledge, such as big city, which is commonly mentioned in Web and mobile queries, has been neglected. Subjective knowledge differs from objective knowledge in that it has no documented or observed ground truth. Instead, the truth relies on people's dominant opinion. Thus, we can use the crowdsourcing technique to get opinion from the crowd. In our work, we propose a system, called crowdsourced subjective knowledge acquisition (CoSKA),for subjective knowledge acquisition powered by crowdsourcing and existing KBs. The acquired knowledge can be used to enrich existing KBs in the subjective dimension which bridges the gap between existing objective knowledge and subjective queries.The main challenge of CoSKA is the conflict between large scale knowledge facts and limited crowdsourcing resource. To address this challenge, in this work, we define knowledge inference rules and then select the seed knowledge judiciously for crowdsourcing to maximize the inference power under the resource constraint. Our experimental results on real knowledge base and crowdsourcing platform verify the effectiveness of CoSKA system.

Click to Read Paper and Get Code
Heterogeneous information network (HIN) embedding has gained increasing interests recently. However, the current way of random-walk based HIN embedding methods have paid few attention to the higher-order Markov chain nature of meta-path guided random walks, especially to the stationarity issue. In this paper, we systematically formalize the meta-path guided random walk as a higher-order Markov chain process, and present a heterogeneous personalized spacey random walk to efficiently and effectively attain the expected stationary distribution among nodes. Then we propose a generalized scalable framework to leverage the heterogeneous personalized spacey random walk to learn embeddings for multiple types of nodes in an HIN guided by a meta-path, a meta-graph, and a meta-schema respectively. We conduct extensive experiments in several heterogeneous networks and demonstrate that our methods substantially outperform the existing state-of-the-art network embedding algorithms.

* CIKM 2019
Click to Read Paper and Get Code
One of the key obstacles in making learning protocols realistic in applications is the need to supervise them, a costly process that often requires hiring domain experts. We consider the framework to use the world knowledge as indirect supervision. World knowledge is general-purpose knowledge, which is not designed for any specific domain. Then the key challenges are how to adapt the world knowledge to domains and how to represent it for learning. In this paper, we provide an example of using world knowledge for domain dependent document clustering. We provide three ways to specify the world knowledge to domains by resolving the ambiguity of the entities and their types, and represent the data with world knowledge as a heterogeneous information network. Then we propose a clustering algorithm that can cluster multiple types and incorporate the sub-type information as constraints. In the experiments, we use two existing knowledge bases as our sources of world knowledge. One is Freebase, which is collaboratively collected knowledge about entities and their organizations. The other is YAGO2, a knowledge base automatically extracted from Wikipedia and maps knowledge to the linguistic knowledge base, WordNet. Experimental results on two text benchmark datasets (20newsgroups and RCV1) show that incorporating world knowledge as indirect supervision can significantly outperform the state-of-the-art clustering algorithms as well as clustering algorithms enhanced with world knowledge features.

* 33 pages, 53 figures, ACM TKDD 2016
Click to Read Paper and Get Code
In many applications, ideas that are described by a set of words often flow between different groups. To facilitate users in analyzing the flow, we present a method to model the flow behaviors that aims at identifying the lead-lag relationships between word clusters of different user groups. In particular, an improved Bayesian conditional cointegration based on dynamic time warping is employed to learn links between words in different groups. A tensor-based technique is developed to cluster these linked words into different clusters (ideas) and track the flow of ideas. The main feature of the tensor representation is that we introduce two additional dimensions to represent both time and lead-lag relationships. Experiments on both synthetic and real datasets show that our method is more effective than methods based on traditional clustering techniques and achieves better accuracy. A case study was conducted to demonstrate the usefulness of our method in helping users understand the flow of ideas between different user groups on social media

* 8 pages, AAAI 2016
Click to Read Paper and Get Code
Current research on hate speech analysis is typically oriented towards monolingual and single classification tasks. In this paper, we present a new multilingual multi-aspect hate speech analysis dataset and use it to test the current state-of-the-art multilingual multitask learning approaches. We evaluate our dataset in various classification settings, then we discuss how to leverage our annotations in order to improve hate speech detection and classification in general.

Click to Read Paper and Get Code
Understanding human's language requires complex world knowledge. However, existing large-scale knowledge graphs mainly focus on knowledge about entities while ignoring knowledge about activities, states, or events, which are used to describe how entities or things act in the real world. To fill this gap, we develop ASER (activities, states, events, and their relations), a large-scale eventuality knowledge graph extracted from more than 11-billion-token unstructured textual data. ASER contains 15 relation types belonging to five categories, 194-million unique eventualities, and 64-million unique edges among them. Both human and extrinsic evaluations demonstrate the quality and effectiveness of ASER.

Click to Read Paper and Get Code
Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. Unlike web search, QA over a knowledge base gives out accurate and concise results, provided that natural language questions can be understood and mapped precisely to structured queries over the knowledge base. The challenge, however, is that a human can ask one question in many different ways. Previous approaches have natural limits due to their representations: rule based approaches only understand a small set of "canned" questions, while keyword based or synonym based approaches cannot fully understand the questions. In this paper, we design a new kind of question representation: templates, over a billion scale knowledge base and a million scale QA corpora. For example, for questions about a city's population, we learn templates such as What's the population of $city?, How many people are there in $city?. We learned 27 million templates for 2782 intents. Based on these templates, our QA system KBQA effectively supports binary factoid questions, as well as complex questions which are composed of a series of binary factoid questions. Furthermore, we expand predicates in RDF knowledge base, which boosts the coverage of knowledge base by 57 times. Our QA system beats all other state-of-art works on both effectiveness and efficiency over QALD benchmarks.

* Proceedings of the VLDB Endowment, Volume 10 Issue 5, January 2017
Click to Read Paper and Get Code
Recurrent neural networks (RNNs) have been successfully applied to various natural language processing (NLP) tasks and achieved better results than conventional methods. However, the lack of understanding of the mechanisms behind their effectiveness limits further improvements on their architectures. In this paper, we present a visual analytics method for understanding and comparing RNN models for NLP tasks. We propose a technique to explain the function of individual hidden state units based on their expected response to input texts. We then co-cluster hidden state units and words based on the expected response and visualize co-clustering results as memory chips and word clouds to provide more structured knowledge on RNNs' hidden states. We also propose a glyph-based sequence visualization based on aggregate information to analyze the behavior of an RNN's hidden state at the sentence-level. The usability and effectiveness of our method are demonstrated through case studies and reviews from domain experts.

* Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2017)
Click to Read Paper and Get Code
Despite the successes in capturing continuous distributions, the application of generative adversarial networks (GANs) to discrete settings, like natural language tasks, is rather restricted. The fundamental reason is the difficulty of back-propagation through discrete random variables combined with the inherent instability of the GAN training objective. To address these problems, we propose Maximum-Likelihood Augmented Discrete Generative Adversarial Networks. Instead of directly optimizing the GAN objective, we derive a novel and low-variance objective using the discriminator's output that follows corresponds to the log-likelihood. Compared with the original, the new objective is proved to be consistent in theory and beneficial in practice. The experimental results on various discrete datasets demonstrate the effectiveness of the proposed approach.

* 11 pages, 3 figures
Click to Read Paper and Get Code