Models, code, and papers for "Yanping Huang":

Markov decision processes (MDPs) are a well studied framework for solving sequential decision making problems under uncertainty. Exact methods for solving MDPs based on dynamic programming such as policy iteration and value iteration are effective on small problems. In problems with a large discrete state space or with continuous state spaces, a compact representation is essential for providing an efficient approximation solutions to MDPs. Commonly used approximation algorithms involving constructing basis functions for projecting the value function onto a low dimensional subspace, and building a factored or hierarchical graphical model to decompose the transition and reward functions. However, hand-coding a good compact representation for a given reinforcement learning (RL) task can be quite difficult and time consuming. Recent approaches have attempted to automatically discover efficient representations for RL. In this thesis proposal, we discuss the problems of automatically constructing structured kernel for kernel based RL, a popular approach to learning non-parametric approximations for value function. We explore a space of kernel structures which are built compositionally from base kernels using a context-free grammar. We examine a greedy algorithm for searching over the structure space. To demonstrate how the learned structure can represent and approximate the original RL problem in terms of compactness and efficiency, we plan to evaluate our method on a synthetic problem and compare it to other RL baselines.

Deep learning methods have shown great promise in many practical applications, ranging from speech recognition, visual object recognition, to text processing. However, most of the current deep learning methods suffer from scalability problems for large-scale applications, forcing researchers or users to focus on small-scale problems with fewer parameters. In this paper, we consider a well-known machine learning model, deep belief networks (DBNs) that have yielded impressive classification performance on a large number of benchmark machine learning tasks. To scale up DBN, we propose an approach that can use the computing clusters in a distributed environment to train large models, while the dense matrix computations within a single machine are sped up using graphics processors (GPU). When training a DBN, each machine randomly drops out a portion of neurons in each hidden layer, for each training case, making the remaining neurons only learn to detect features that are generally helpful for producing the correct answer. Within our approach, we have developed four methods to combine outcomes from each machine to form a unified model. Our preliminary experiment on the mnst handwritten digit database demonstrates that our approach outperforms the state of the art test error rate.

The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier---AmoebaNet-A---that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-the-art 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.

GPipe is a scalable pipeline parallelism library that enables learning of giant deep neural networks. It partitions network layers across accelerators and pipelines execution to achieve high hardware utilization. It leverages recomputation to minimize activation memory usage. For example, using partitions over 8 accelerators, it is able to train networks that are 25x larger, demonstrating its scalability. It also guarantees that the computed gradients remain consistent regardless of the number of partitions. It achieves an almost linear speed up without any changes in the model parameters: when using 4x more accelerators, training the same model is up to 3.5x faster. We train a 557 million parameters AmoebaNet model on ImageNet and achieve a new state-of-the-art 84.3% top-1 / 97.0% top-5 accuracy on ImageNet 2012 dataset. Finally, we use this learned model to finetune multiple popular image classification datasets and obtain competitive results, including pushing the CIFAR-10 accuracy to 99% and CIFAR-100 accuracy to 91.3%.

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.